
This paper is included in the
Proceedings of the 18th USENIX Symposium on

Networked Systems Design and Implementation.
April 12–14, 2021

978-1-939133-21-2

Open access to the Proceedings of the
18th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Device-Based LTE Latency Reduction at the
Application Layer

Zhaowei Tan and Jinghao Zhao, UCLA; Yuanjie Li, Tsinghua University;
Yifei Xu, Peking University; Songwu Lu, UCLA

https://www.usenix.org/conference/nsdi21/presentation/tan

Device-Based LTE Latency Reduction at the Application Layer

Zhaowei Tan1, Jinghao Zhao1, Yuanjie Li2, Yifei Xu3, Songwu Lu1

1UCLA, 2Tsinghua University, 3Peking University

Abstract
We design and implement LRP, a device-based, standard-
compliant solution to latency reduction in mobile networks.
LRP takes a data-driven approach. It works with a variety of
latency-sensitive mobile applications without requiring root
privilege, and ensures the latency is no worse than the legacy
LTE design. Using traces from operational networks, we iden-
tify all elements in LTE uplink latency and quantify them.
LRP designates small dummy messages, which precede up-
link data transmissions, thus eliminating latency elements due
to power-saving, scheduling, etc. It imposes proper timing
control among dummy messages and data packets to handle
various conflicts. The evaluation shows that, LRP reduces the
median LTE uplink latency by a factor up to 7.4× (from 42ms
to 5ms) for four tested apps over five mobile carriers.

1 Introduction

Low latency is critical to the proper functioning of various
delay-sensitive mobile applications, such as mobile VR/AR,
mobile gaming, mobile sensing, mobile machine learning,
and emerging robot/drone-based image/speech recognition
[22, 29, 36, 40]. These applications typically run on 4G LTE
and 5G mobile networks, which offer ubiquitous access and
seamless service. In this work, we study how to reduce net-
work latency over LTE networks for such applications in the
connected state. This complements the work that reduces the
connection setup latency [33].

Many emergent latency-sensitive mobile apps differentiate
themselves for their heavier uplink data transfer (e.g., user
motion control, sensory data, and live camera streaming) from
the device to the infrastructure. Our experiments further reveal
that, uplink latency contributes to a large portion of overall
latency in tested apps over operational LTE (§3.1). Reducing
the uplink latency is thus as important as reducing the down-
link latency. While the downlink transfer has been extensively
optimized, the uplink data transfer is less studied.

Reducing the uplink LTE latency turns out to be more chal-
lenging than the downlink latency. The uplink data transfer

in LTE is more complex, since it involves the interaction
between the device and the network. It adopts the feedback-
based device power-saving, base station-controlled schedul-
ing for data transfer, on-demand radio resource allocation,
retransmissions, etc. This results in more network latency
sources with complex interactions. Traditional infrastructure-
based solutions fall short to optimize them due to the lack of
knowledge on device-side application usage patterns.

We design and implement LRP, a device-based, software-
only LTE latency reduction solution that is readily usable for
every commodity smartphone device. A salient feature of LRP
is that it does not require root/system privilege, firmware mod-
ification or hardware change. It is thus applicable to every off-
the-shelf commodity device, including Android and iOS. LRP
explores the application-driven network latency reduction at
the device, which complements those existing infrastructure-
centric solutions that are good at downlink latency reduction.
LRP focuses on reducing LTE uplink network latency, which
is the bottleneck based on our empirical analysis.

The overall design of LRP takes the data-driven approach.
Through analysis of operational LTE traces, we identify all
elements in LTE uplink latency, and quantify them via two
popular applications (§3.2). Based on the gained insights,
LRP designates small dummy messages, which precede those
uplink data packet transfers. It thus eliminates the latency
elements due to power-saving and scheduling (§5). To make
this conceptually simple idea work, LRP infers critical LTE
parameters at the application layer, and performs proper tim-
ing control among dummy messages and data packet streams.
To reduce the overall latency, LRP further resolves the conflict
that arises among dummy messages, and avoids the conflict
between data packets and dummy messages. All these solu-
tion components work at the application layer without root
privilege, thus available for every off-the-shelf commodity
mobile device. While LRP is mainly designed in 4G LTE, it
can be readily generalized to benefit the emergent 5G (§5.5).

We implement LRP on commodity Android phones (§6).
Our experiments confirm LRP’s effectiveness (§7). LRP re-
duces the median LTE uplink latency by up to 7.4× (from

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 471

Mobile
Device

Base
Sta/on

Core
Network

•	•	••	•	•
RB

&RQWURO
'DWD

&RQWURO
'DWD

Subframe

Figure 1: Network data transmission over LTE.

42ms to 5ms) for four tested applications over five mobile
carriers. In any case, LRP ensures that the network latency
for data transfer is no worse than the legacy LTE design. The
incurred energy and data volume overhead is negligible.

2 Latency-Sensitive Mobile Apps over LTE

The mobile networks, such as 4G LTE and 5G, offer the only
large-scale infrastructure that ensures universal coverage and
“anytime, anywhere” access. Its infrastructure consists of radio
base stations (BSes) and the core network (see Figure 1). A
mobile device transfers its data with a local BS (“cell”), which
covers a geographic area. The BS further relays the data to
the Internet via the LTE core. A mobile device has uplink
(device→BS) and downlink (BS→device) transmissions. In
4G LTE, data transfer uses scheduling-based mechanisms,
where a BS schedules radio resources for each device in the
cell for its uplink and downlink data transfer.

We next exemplify some representative latency-sensitive
applications over the mobile networks.
Mobile VR A mobile virtual reality (VR) app typically in-
volves 3D scenes and associated graphical engines [10, 15, 29,
31]. Standalone VR headsets such as Google Daydream [17]
render 3D scenes locally. However, due to limited computa-
tion resources and high power consumption on mobile devices,
high-quality VR applications typically need the edge/cloud
servers to offload the rendering task [44]. In this client-server
scheme, the mobile headsets or pads provide sensory/control
data, while the server renders the 3D scene in the form of
graphical frames. The server coordinates multiple devices,
renders the VR graphical frames based on the device’s input,
and constructs the appropriate 3D scene for each given device.
• Showcase VR prototype: Following the above paradigm, we
have built an example VR game with Unity 3D engine [42] on
Android phones to study LTE latency. It has three modules:
the controller at the device, the camera controller at the server,
and the streaming component. The Android controller app
acquires the device rotation data from the gyroscope sensor to
control the in-game camera rotation. The GPS location is fed
into the VR game so that the virtual character moves with the
player’s location updates. Upon receiving the player’s sensory
data, the camera controller at the server processes them and
makes corresponding position and rotation movements for
the virtual camera. We implement the streaming module with

open-sourced libraries Unity Render Streaming [46] and We-
bRTC for Unity [18]. With the streaming module, the camera
view is rendered and streamed back in 60FPS to the player
with WebRTC. Players open the camera stream with the Web
browser on the phone to get the real-time camera view.
Mobile sensing Smartphones today are equipped with mul-
tiple sensors: accelerometer, gyroscope, camera, to name a
few. Many mobile sensing apps collect sensory data and up-
load them at runtime to the cloud for processing. For example,
a localization app sends the GPS data to the cloud for realtime
navigation. All such sensing apps are latency sensitive.
Mobile gaming In multi-player mobile games, the device
acts as a controller that collects user motion, while the re-
mote server processes the game logic. The server further pro-
vides proper synchronization and coordination among players.
Moreover, pure cloud-based gaming (with rendering being
processed in the cloud) is also trendy [29]. It is a new gaming
paradigm being pushed by companies [40].
Cloud/edge-assisted machine learning Mobile apps with
machine learning features (e.g., image/object recognition or
speech understanding [14, 22]) also pose latency require-
ments. Network latency becomes a bottleneck for smart assis-
tants, such as Alexa [7] and Siri [45]. Users may tolerate at
most 200ms response time, while deep learning based local
transcriptions take only 10ms [13].
Networking usage patterns by these mobile apps All
the above representative mobile apps involve frequent and
regular uplink data transfer. The mobile VR, sensing, and
gaming [49, 50] applications collect data from device sensors
and upload them to the server for subsequent actions. These
sensors typically produce small data periodically. The user
can only configure the sampling periodicity through the API
provided by the mobile OS [21]. The machine learning based
apps also have predictable traffic. They typically perform
local computations with predictable latency before an uplink
data transfer. For example, face recognition apps process a
video frame locally using a fixed-sized neural network (NN).
A user can gauge the delay based on the NN size. Emerging
robotic or drone-based applications perform local tasks for a
certain duration (e.g., scanning the surrounding environment
for a few seconds [6]) before uploading the result. Such apps
also exhibit uplink traffic that can be accurately predicted.

3 Demystifying LTE Latency in Mobile Apps

In this section, we empirically analyze where the application-
perceived LTE latency stems from. We address two issues:

• How large can LTE uplink latency be over operational 4G
networks? We use measurements to quantify it in §3.1.

• Why is the uplink latency prohibitively high over LTE? We
break down this latency into multiple elements. We quantify
their impact, identify root causes, and share insights in §3.2.

472 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

App Latency AT&T T-Mobile Verizon Sprint

PUBG
UL Net 10.7 9.9 10.0 17.7
DL Net 5.0 5.0 5.0 5.0

UL/Total 68.2% 66.4% 66.7% 78.0%

VR
UL Net N/A 1 18.4 23.8 N/A
DL Net N/A 8.5 10.6 N/A

UL/Total N/A 68.4% 69.2% N/A

Table 1: LTE latency (ms) for two mobile apps.

3.1 Measuring LTE Latency

We quantify the uplink latency over operational LTE networks
via measurements and trace analysis.

Methodology We analyze the traces from our showcase
VR game and another popular mobile application PUBG Mo-
bile [40]. Our VR application uploads user motion pack-
ets (∼60Bytes) and receives 60FPS, 5Mbps downlink video
stream. The downlink data packets are sent from the de-
ployed server to the device over LTE. PUBG is a mobile
game with frequent uplink data (∼40ms interval) and down-
link responses. Both uplink and downlink packets are small
(<100Bytes). The latency due to server processing is less than
1ms. The mobile devices (a Pixel 2 and a Pixel XL) run the
apps. We collect both app logs and LTE signaling traces via
MobileInsight [32]. We carry out our experiments over four
US mobile carriers from 12/2019 to 09/2020. The tests cover
static, low-mobility (∼1m/s), and high-mobility (∼30mph)
cases, with varying signal strength (-120∼-80dBm).

Results We first measure the LTE uplink latency. We mon-
itor the device buffer and compute the latency for each data
packet. This information is available in the MobileInsight
message “LTE MAC UL Buffer Status Internal”. Despite small
packet size, the uplink latency turns out to be non-negligible,
as shown in Table 1. For all four carriers, the uplink la-
tency (UL NET) ranges from 9.9-17.7ms for PUBG and
18.4-23.8ms for VR. These latency values might not meet
the requirements of a number of latency-sensitive apps [5].

Who is the latency bottleneck? We further discover that,
instead of downlink, the uplink latency poses as a major com-
ponent in overall latency. We compute the downlink latency
from logs of “MAC DL Transport Block” in MobileInsight. The
results (DL NET) are in Table 1. We see that, uplink latency
accounts for 66.4-78.0% in PUBG and 68.4-69.2% in VR.
Surprisingly, even for the downlink-heavy VR app, uplink la-
tency still contributes to a large portion of the overall latency.
Recent techniques (e.g., MIMO and carrier aggregation) and
5G further reduce the DL latency with faster PHY designs. In
contrast, as we will see later, the scheduling design employed
for the uplink will likely be retained in 5G. As a result, we
will focus on the uplink latency in this paper.

1VR cannot run on AT&T and Sprint, since their firewalls block the traffic.

Base
Sta'on

Mobile	
Device

Data	&	BSR	(if	grant	insufficient)
Tsr_grant

DRX
Related

Tbsr_grant

SR

Grant

Grant

Data

Tsr_wait

Packet	arrives	
in	buffer

Scheduling
Related

4ms

4ms

DRX	OFF

DRX	ON

Tretx NACK	&	Grant

Data

4ms

4ms

(If	packet

(If	grant	by	SR	

(If	packet	corrupted)

Tdrx_doze
arrives	in	OFF)

insufficient)

Figure 2: LTE uplink procedure & latency elements.
Latency (ms) AT&T T-Mobile Verizon Sprint

Tdrx_doze 29.7 31.9 28.3 29.2
Tsr_wait 4.4 4.4 4.6 9.0
Tsr_grant 8.2 8.5 8.0 10.1
Tbsr_grant 0.03 0.00 0.03 0.16

Tretx 0.17 0.14 0.32 0.72

Table 2: Measured latency elements for VR application.
Tdrx_doze is the average value when present.

3.2 Why Long Latency: Breakdown Analysis

We next analyze the root causes for long network latency in
4G LTE. We identify various latency elements for the LTE
uplink latency by analyzing the 3GPP standards [1, 2].

We breakdown the uplink latency as shown in Figure 2. The
average number of each latency element is shown in Table 2.
We can observe that, the major uplink latency bottlenecks are
Tdrx_doze, Tsr_grant , and Tsr_wait , while Tbsr_grant and Tretx are
one magnitude smaller compared to other elements. We will
see how each latency element acts and why it poses or does
not pose as the latency bottleneck to our applications.

3.2.1 DRX Doze Latency.

Power-Saving Mode through DRX The power-saving
mechanism DRX (Discontinuous Reception) in LTE may also
affect latency. In a nutshell, DRX is a technique for a device
to save power over LTE (see Figure 3). Instead of continu-
ously waking up for potential downlink delivery from the BS,
the device might sleep in the absence of data transfer, thus
reducing its energy consumption. In DRX, a device has three
states: Long DRX Cycle, Short DRX Cycle, and Continuous
Reception (CRX) [2]. In CRX, the device wakes up during
the ON period to monitor downlink channels. In long/short
DRX, the device only wakes up for a short period of time (set
by the onDuration Timer) at the start of each DRX cycle. It
dozes off during the OFF period for the remaining time.

The DRX state transition is shown in Figure 3. In the
Long/Short cycle state, if any downlink data is received dur-
ing the ON period, the device enters the CRX state and starts
the drx-InactivityTimer. Upon sending an uplink data, the
device initiates an SR request. It then switches to the CRX
state as well. If the device receives downlink data or initiates
another SR request, the timer restarts. The short DRX state

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 473

Parameters AT&T T-Mobile Verizon Sprint

Tsr_grant

8ms 96.6% 96.5% 98.8% 0
10ms 0 0.2% 0.1% 98.1%
others 3.4% 3.3% 1.2% 1.9%

Tsr_periodicity

10ms 94.0% 98.1% 92.3% 11.9%
20ms 6.0% 1.9% 0 48.9%
40ms 0 0 7.7% 39.%

Tinactivity_timer
200ms 100.0% 99.5% 99.6% 84.5%
others 0 0.5% 0.4% 15.5%

Table 3: Critical LTE parameters for uplink latency.

Long	DRX Short	DRX

CRX

drxShortCycleTimer
Cycles	End

SR/DL	Data
Drx-Inac=vityTimer

Expires SR/DL	Data

Figure 3: State transition for LTE DRX power-saving.

is entered once the drx-InactivityTimer expires. In this state,
the device enters long DRX after the number of drxShortCy-
cleTimer short cycles. All such involved timer parameters are
negotiated between the device and the BS during connection
setup through RRC.

How downlink DRX incurs long uplink latency DRX
is designated for power saving over downlink transmissions.
It should not block any uplink transfer. In fact, the 3GPP
specification [2] stipulates that, upon the uplink sending an
SR, downlink DRX should enter the CRX state as if receiving
a downlink data packet. However, we found that this is not the
case in practice. A new data packet refuses to invoke an SR
if the device is in the doze mode. Instead, it continues to doze
for a while (the time is denoted as Tdrx_doze). It then waits for
an SR slot to initiate the SR, while migrating the device to the
CRX state. Table 2 shows that, Tdrx_doze is 28.3-31.9ms on
average in the four carriers. The maximum latency is 59ms
with the 90th percentile being 42ms.

Note that the DRX doze latency is different from the known
downlink packet delay due to waiting for DRX ON state.
3GPP [1, 2] does not mandate to prepare for SR at the DRX
state. Although this latency element is not standardized, it is
common for vendors as they use DRX doze to save energy.
The DRX-induced doze timer is hinted in Qualcomm patents
[52], where the device defers its SR during DRX OFF for
energy savings. We also indirectly validate this behavior
in a ZTE Z820 with Mediatek Chipset. For packets with an
interval of 1 second, the measured average RTT is 35ms longer
than that of packets with a small interval.
Insight: A packet keeps the device at the CRX state for
Tinactivity_timer. The idea is to reduce the DRX doze latency by
sending a dummy message in advance. This way, the device
is kept in the ON period before data arrival. The data packet
can thus be sent without deferring until the doze period ends.

3.2.2 Scheduling Latency.

Uplink/downlink scheduling in LTE: In LTE, the uplink
and downlink data transfers take different approaches:

• Uplink data transfer over LTE As shown in Figure 1, the
uplink data transmission is through PUSCH (Physical Uplink
Shared Channel). All data transmissions are regulated by
the BS, which allocates resource blocks (RBs) for the actual
transfer. An RB is the smallest unit allocated for a device.

In the scheduling-based LTE design, uplink data cannot be
immediately sent out before the device is granted resource.
This is done via the request and grant mechanism. Specifi-
cally, the device sends an SR (Scheduling Request) through
PUCCH (Physical Uplink Control Channel). SR is a signal-
ing message notifying new data arrival at the mobile device.
Moreover, an SR signal cannot be sent at any time instantly.
It can only be sent during certain subframes (called SR oc-
casions). The periodicity of SR occasions is notified by the
BS during connection setup. Upon receiving an SR, the BS
returns an uplink Grant (i.e., grant) to the device. A grant
specifies what RBs and modulation the device could use 4ms
later. The number of RBs in response to an SR depends on the
BS configuration, since SR is just a message stating “device
has data to send” without specifying the amount.

• Downlink data transfer over LTE LTE still uses the
scheduling-based operations for its downlink. However, BS
directly allocates RBs for each device upon data arrival, since
BS knows what data to transmit to which device.

How scheduling incurs long latency The device also suf-
fers from its uplink scheduling latency. It must wait for an SR
occasion before receiving a grant from the BS to upload its
data packet. The latency element, denoted as Tsr_wait , is thus
affected by the periodicity of an SR occasion Tsr_periodicity.
The device then waits for a grant, which the device could
use 4ms later. The latency from sending the SR to send-
ing the data packet is denoted as Tsr_grant . The two elements
of scheduling are shown in Figure 2. We measure them
in Table 2. The SR waiting latency Tsr_wait is 4.4ms for
AT&T, 4.4ms for T-Mobile, 4.6ms for Verizon, and 9.0ms
for Sprint. Sprint has the largest Tsr_wait because it has the
longest SR cycle. Tsr_grant is 8.2ms, 8.5ms, 8.0ms, and 10.1ms
for the four carriers. The accumulative latency is denoted as
Tscheduling = Tsr_wait +Tsr_grant .
Insight: This scheduling latency can be reduced. If a grant
is pending at the device, a new arriving data packet can use
it for transfer. Therefore, we may use a dummy message to
request for a grant in advance, so that the data packet can use
this grant for actual transfer without delay.

3.2.3 Other Latency Elements.

Buffer status report (BSR) SR is an indicator that in-
forms the BS of new pending data, without specifying how
much. When the packet that triggers SR is large, the initial
grant might be insufficient. The device then sends a BSR
(Buffer Status Report) together with the data packets in the
scheduled RBs. Unlike SR, a BSR includes the info on how
much data still remains in the device buffer. Upon receiving

474 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

LRP

Energy-Efficient	DRX	
Doze	Elimina5on

Resource-Efficient	
Proac5ve	Scheduling

Firmware
LTE	Radio

Mobile	OS

LRP

Rootless	Inference	of	Cri5cal	Parameters

Resolving	the	Conflicts	for	Low	Latency

Figure 4: An overview of LRP.

the BSR, the BS will process it and respond with sufficient
grants for the buffered uplink data.

We note BSR’s impact on uplink latency is negligible for
most applications in §2. The latency between a BSR and the
time to use the grant (denoted as Tbsr_grant) is illustrated in
Figure 2. Conceptually, it is the request processing time + 4ms,
similarly to Tsr_grant (≈ 10ms). However, it equals to 0 when
the initial grant is sufficient. The measurement results are in
Table 2. The BSR latency is less than 1ms on average for four
US carriers. This is because a base station usually provides a
large grant (>100B) sufficient for our apps in response to SR,
Retransmission in LTE An uplink data packet might be
corrupted during transfer. Upon receiving a corrupted packet,
the BS notifies the device by sending a NACK and a grant.
The device uses the grant to retransmit the corrupted data.
Similar to BSR latency, the retransmission has limited impact
on the uplink latency for apps in §2. The ReTx latency for up-
link data packet is fixed at 8ms if needed [1] and 0 otherwise.
We denote this latency as Tretx and the procedure is shown in
Figure 2. Among all data packets, 2.1% in AT&T, 1.7% in
T-Mobile, 4.0% in Verizon, and 9.1% in Sprint perceive ReTx
latency. Less than 1ms latency is incurred on average, shown
in Table 2. Unlike downlink with up to 10% retransmissions
[48], uplink packets are small and less prone to corruption.

4 LRP Overview

We devise LRP, an in-device software solution to latency re-
duction for mobile apps. Figure 4 shows LRP’s components. It
runs as a user-space daemon at the device, without requiring
system/root privilege, firmware modification, or hardware sup-
port. It is applicable to both Android and iOS. LRP masks the
LTE latency elements in §3.2 for applications by proactively
requesting the needed radio resources and high-speed transfer
mode, while still retaining low energy and data consumption
overhead. As an application-layer solution, LRP cannot di-
rectly control the low-level LTE mechanisms (that require root
privilege or firmware access). Instead, it indirectly regulates
the LTE uplink transfer with well-crafted dummy packets. LRP
complements solutions designed to reduce other non-network
latency elements [19, 51, 54]. While conceptually simple,
LRP must address three challenges:
• Accurate timing control for each latency element (§5.1–
5.2): Initializing the dummy packets at the right time is
crucial to both reducing latency and minimizing energy con-
sumption, signaling overhead, and radio resource usage (thus

Rouser

Inac+vityTimer On	Period Off	Period

Reset

Expire Tdrx_doze

Tinac+vity_+mer

Expire Tdrx_doze

(a)

(b)

(c)

Rouser Rouser

Rouser

Rouser

Reset

Last
Packet

New
Packet

Last
Packet

Last
Packet

New
Packet

New
Packet

Reset

Figure 5: Component solution to DRX doze latency.

billing). The proper timing depends on the traffic pattern and
the unique characteristics of each latency element. To this
end, LRP customizes the timing control for critical latency
elements, including the DRX doze and scheduling (§3.2).
• Conflict handling for overall latency reduction (§5.3):
Simply reducing each latency element does not suffice to
reduce the overall latency. Due to the complex interactions
between LTE latency elements, reducing one latency element
may increase other latency elements. Moreover, the dummy
packets may compete radio resources with the legitimate data,
incurring additional data latency. To this end, LRP devises
resolution and avoidance schemes for both types of conflicts.
• Rootless inference of critical LTE parameters (§5.4):
To be readily usable by every device, we design LRP as a user-
space software daemon without requiring system/root privi-
lege. The challenge is that, LRP’s latency reduction requires
the fine-grained knowledge of low-level LTE parameters in-
side the hardware modem chipset. Existing solutions to di-
rectly access them (e.g., MobileInsight [32] and QXDM [41])
require root privilege or external hardware support. Accord-
ing to [28], only 7.5% of global mobile devices are rooted.
We propose a novel approach to infer these parameters with-
out any system privilege or firmware/hardware modification.

5 The LRP Design
We next elaborate on LRP’s design. We first propose compo-
nent designs to reduce each latency element (§5.1–§5.2), and
resolve potential conflicts among them (§5.3). To realize the
components without root privilege, we propose a novel infer-
ence method at the application layer (§5.4). We analyze LRP
and extend the discussion to irregular traffic and 5G (§5.5).

5.1 Energy-Efficient DRX Doze Elimination
To reduce the DRX doze latency in §3.2.1, LRP should en-
sure the device is in ON period when a data packet arrives
at the device buffer. As an application layer solution, LRP
cannot directly switch the device to the CRX state (that needs
firmware modification). Instead, it sends a dummy packet
(rouser) before the data packet’s arrival.

Despite being straightforward at the first glance, a rouser
is only effective if being sent at the right time. An imprudent
rouser can either incur unacceptable energy waste or cannot
help reduce latency. Therefore, timing control is crucial to
balancing latency and energy cost. We first discuss some naive
solutions with limitations, and then present our design.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 475

BS
(a) Time

BS
(b) Time

Buffer

Grant DataSR SR

Buffer

Prefetcher Data Grant

Figure 6: Impact of prefetcher Timing.

Naive timing control One naive solution is to keep DRX
at CRX state at all times by frequently sending rousers. As
shown in Figure 5(a), this can be achieved by sending a rouser
every Tinactivity_timer. Unfortunately, this results in unaccept-
able energy waste, as the device never enters the doze mode.

A better choice is to send a rouser with the time in advance,
denoted as tr, being set to tr = Tinactivity_timer (Figure 5(b)). On
one hand, as the packet keeps the ON period for Tinactivity_timer
after dozing, tr = Tinactivity_timer ensures that the data packet
enters the buffer during the ON period. On the other hand,
this saves power compared to the first naive choice, since the
extra ON period is capped at Tinactivity_timer for each packet
at most. However, extra energy consumption is still incurred.
Since Tinactivity_timer (∼200ms) is typically much larger than
Tdrx_doze (∼30ms) in reality, the ON period between wakeup
from the doze mode and the data packet is unnecessary.

LRP’s approach LRP prioritizes latency over marginal en-
ergy waste with proper timing control. Instead of frequent
rousers in naive solutions, LRP only sends a rouser for the
time Tdrx_doze in advance. We thus keep updating the maxi-
mum Tdrx_doze, denoted as Tdrx_doze_max. The timing to send
the rouser is tr = Tdrx_doze_max. If the device enters the ON
period during doze, i.e. tr > Tdrx_doze, the rouser finishes doz-
ing before the data packet arrives, thus eliminating the doze
latency for the data packet. It is also likely that Tdrx_doze for a
rouser exceeds tr. In this case, the packet enters the buffer and
endures the dozing latency together with the rouser. Although
the doze latency is not eliminated, the rouser reduces it by tr.

5.2 Resource-Efficient Proactive Scheduling

LRP next seeks to mask the round trips of the scheduling in
§3.2.2 for the mobile app. The idea is to send a scheduling
request (SR) before the arrival of the data, so that the data
does not need to wait for the radio grants. As an application-
layer solution, LRP cannot directly trigger the SR early (which
requires modifying the firmware). Instead, it requests a grant
from the BS in advance by sending a dummy message, named
prefetcher. This is feasible since the grant is not tied with the
packet that requests it. Moreover, since the BS responds to
each SR regardless of the pending data size, a small dummy
message can receive a grant that allows for much-larger-size
transmission than itself, thus sufficing to accommodate the
followup data packet transfer in a single transmission.

Similar to the DRX doze elimination in §5.1, an effective
prefetcher also needs accurate timing control. As shown in
Figure 6, imprudent timing can offset the latency reduction,
and/or waste radio resources. We next discuss both naive

Prefetcher
Data
GrantBS

(a)
Time

SR Grant Data

BS
(b)

Time
Data/BSR DataGrant GrantSR

Buffer

Buffer

Figure 7: Corner case: a prefetcher increases latency.

solutions in Figure 6, and then show LRP’s approach.
Naive timing control A too early prefetcher might result
in both resource waste and prolonged latency as shown in
Figure 6(a). The prefetcher is sent too early so that the timing
to use the returned grant is already passed when the data
packet arrives. The resource is thus wasted, while the data
packet misses the opportunity to reduce its scheduling latency.

Similarly, a late prefetcher could also miss the opportunity
to reduce the scheduling latency for the data packet, as shown
in Figure 6(b). If the prefetcher is sent too late after a potential
SR that could reduce latency, the data packet might have to
wait for scheduling latency as if no prefetcher is issued. In
the worst case for both early and late prefetcher, it may result
in missed latency savings up to Tsr_periodicity +Tsr_grant .
LRP’s approach LRP aims at reducing the scheduling la-
tency at marginal radio resource cost. Let a prefetcher be sent
tp before the data packet. The parameter tp must meet two
requirements. First, we should ensure tp ≥ Tsr_grant . Note that,
an SR can only request a grant to be used at Tsr_grant after the
SR. Therefore, tp ≥ Tsr_grant guarantees that the SR is sent
only if it helps to reduce the scheduling latency for the data
packet. Second, we must ensure tp ≤ Tsr_grant . This is to let
the requested grant be used to transmit the data packet. No
resource waste or premature SR is incurred.

Consequently, our timing design is to set the time advance
as tp = Tsr_grant , which meets both requirements. Note that
Tsr_grant is typically constant for a BS, being the accumula-
tive latency of SR processing latency + 4ms, where 4ms is a
standardized parameter in [1]. In our experiment, more than
96.5% of Tsr_grant is identical under a BS regardless of the
carrier. If Tsr_grant changes after handover to a new BS, we
update Tsr_grant immediately. Even if Tsr_grant may vary, our
solution is no worse than the current practice.
Impact of the data packet size A prefetcher helps reduce
scheduling latency if the data packet size ≤ grant - prefetcher
size, which is common in reality as >99% of initial grants
in our experiments exceed 100B in all operators, while the
uplink sensory data is smaller than half of that. Therefore,
a prefetcher initiates an SR, and gets a returned grant that
suffices for the data packet to be sent with the prefetcher.

However, a corner case arises when the grant in response
to SR is enough for the data packet, but not for a prefetcher
+ the data packet. As shown in Figure 7(b), the device could
only send the prefetcher and a portion of the data packet. A
BSR further requests a grant for the remaining data. The data
packet thus suffers extra BSR latency compared to the case
without prefetcher (Figure 7(a)). In the worst-case scenario,
this latency increases by Tsr_grant (∼8ms). We discuss the

476 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Last	packet	sent

Predict/schedule	next	packet	will	be	sent	in	Tinterval

Tinterval>Tinac+vity_+mer?

Both	DRX	doze	&	scheduling

Resolve	conflicts	between	
prefetcher	&	rouser	(5.3.1)

YES

No	conflict
Run	soluMon	in	5.2

NO

Tinterval>2Tsr_grant?YES

Tinterval>Tsr_grant?

NO

Conflict	avoidance	(5.3.2)

YES

Do	nothing

NO

Only	scheduling	latency

Figure 8: The workflow of conflict handling in LRP.

probability of this case in Appendix B. However, even in this
corner case, the worst case happens only when the data and
the prefetcher arrive in the same SR period, with probability
Tsr_grant/Tsr_wait . For other conditions in the corner case, the
latency is the same as vanilla LTE.

5.3 Handling the Conflicts for Low Latency
LRP further resolves several conflicts for overall latency re-
duction. Figure 8 illustrates the workflow of LRP. Let Tinterval
be the time interval between the last and the next expected
packet. LRP thus reduces various latency elements. It handles
improper interplay between latency elements, and between
dummy and data packets.

5.3.1 Conflict Resolution Between Latency Elements

LRP issues two types of dummy packets for latency reduction:
rousers for DRX-induced doze latency, and prefetchers for
scheduling latency. Figure 9(a) illustrates their conflicts. A
rouser itself is a dummy message that needs to be sent before
a prefetcher. Once turning the device to DRX ON, it asks
for the grant, which could carry both rouser and prefetcher.
Therefore, the prefetcher is sent by the grant requested by the
rouser. The grant-induced scheduling latency is not reduced
at all. The latency penalty can be as large as Tsr_periodicity +
Tsr_grant compared to no-conflict case in Figure 9(b).

To resolve this conflict, we refine the timing control to
ensure both dummy packets’ effectiveness. Specifically, we
should make sure a rouser is sent when a prefetcher hits
the device buffer, so that the prefetcher can take effect
and reduce the scheduling latency. A rouser takes at most
Tsr_periodicity+Tsr_grant to be sent out as a dummy message and
a prefetcher needs to be sent Tsr_grant before the data packet.
Therefore, we adapt the timer from tp = Tdrx_doze_max to
Tdrx_doze_max +Tsr_periodicity +2Tsr_grant to ensure a rouser is
sent before a prefetcher. The rouser thus endures Tdrx_doze_max
that guarantees the doze is completed and then sent out.

5.3.2 Conflict Avoidance Between Dummy and Data

The next conflict arises between LRP’s dummy packets and the
last legitimate data packet. If a rouser conflicts with the last
packet, this does not pose an issue: the rouser can still help
the device to remain in the ON period for Tinactivity_timer. We
thus only discuss where a prefetcher intervenes with the last
packet. We show how LRP adapts this for latency reduction.

There are two instances when a prefetcher arrives in the
buffer before the last data packet being completely sent out,
shown in Figure 10. In case (a), the prefetcher does not pro-
vide any latency reduction. The grant for the last packet has
enough room to carry the prefetcher, which will be sent to-
gether. There is no prefetcher-requesting grant for the next
data packet. In case (b), a prefetcher may increase the latency.
The grant for the last data packet cannot accommodate the
piggy-backed transmission of the prefetcher. A BSR request is
thus triggered by the device to request for more grants. Since
BSR specifies the size for the dummy message prefetcher,
the returned grant does not suffice to transmit the data packet.
This subsequently invokes another round of BSR-grant opera-
tions. The data packet might suffer from extra BSR latency.

To avoid the conflicts, LRP adjusts the timing of a prefetcher.
It leaves enough time for the last packet to complete its trans-
mission before the prefetcher. Recall that the theoretical max-
imum uplink latency that the last packet would experience
after optimization is Tsr_grant . The dummy prefetcher is then
sent at least Tsr_grant after the application sent its last packet.
Specifically, if the time gap (between the last packet arrival
and the next packet arrival) is larger than 2Tsr_grant , we send a
prefetcher Tsr_grant before the next packet. This is the timing
we designed in §5.2; it will not break the above condition.
Otherwise, we send a prefetcher Tsr_grant after the last packet.
This choice will reduce less latency compared to the timing
in §5.2 without conflicts. However, we avoid the cases of
Figure 10, where a conflict negatively affects the latency.

5.4 Rootless Inference of Critical Parameters
As shown in §5.1–5.3, LRP relies on knowing certain LTE
parameters for latency reduction. Obtaining such parame-
ters through the root privilege can definitely work. However,
such an approach limits the applicability of LRP. To let LRP
work with every commodity device, we seek to infer these
parameters at the application layer. Note that existing tools
typically require system privilege (e.g., MobileInsight [32])
or additional hardware (e.g., QXDM [41]).

To infer these critical LTE timers, LRP exploits packet pairs
for probing. Figure 11 shows the general procedure. LRP sends
two adjacent probing requests and records their interval t1.
Upon receiving the responses to both packets, LRP compares
the responses’ intervals t2 with t1, and estimates the corre-
sponding timers. This approach is based on the premise that,
the difference between t1 and t2 mainly arises from the dif-
ferent uplink LTE latency experienced by two packets. This
premise largely holds in practice, because latency fluctuations
from the base station are much larger than those in the core
network or servers2. Compared with the conventional packet-
pair technique, LRP customizes probing packets with the LTE

2We have validated this premise in operational LTE. We send a pair of
DNS requests at t1 = 0. A UL grant suffices to send both requests; they arrive
at the BS simultaneously. t2 is solely affected by the core network and DL.
The results show that t2 < 1ms for >99% responses.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 477

BS Rouser

•	•	•

Tdrx_doze

Time

BS

•	•	•

Tdrx_doze

•	•	•

Time

(a)

(b) Grant DataSR

Grant DataSR

Grant DataSR

SR

Buffer

Buffer
Prefetcher
Data
Grant

Figure 9: Improper timing control causes conflicts between components.

Data
BS Time

Buffer

Grant DataSR(a)

(b)
BS Time

Buffer

Grant Data/BSRSR Grant Data/BSR Grant Data

GrantSR

Prefetcher Data Grant

Figure 10: Conflicts: dummy msgs & data.

DNS
Server

t1

Mobile
Device

Base
Sta2on

t2

Tscheduling

Tscheduling+Tdrx_doze

(a) Tdrx_doze

DNS
Server

t2

Mobile
Device

Base
Sta2on

Tsr_grant

t1=0

(b) Tsr_grant

Figure 11: Inferring parameters at application layer.

domain knowledge for accurate inference.
Inferring DRX-related parameters To reduce DRX doze
latency, LRP should know Tdrx_doze_max (§5.1). Recall that the
DRX doze latency is only present when the packet interval
is large. The idea is to let t1 be large enough so that the first
response packet cannot keep the second request in DRX ON.
The second packet in the pair experiences UL DRX doze
latency, while the first does not as we immediately start next
pair after one is done. We can thus use the interval difference
t2− t1 to infer DRX doze latency. Consider that two requests
can also be different in terms of scheduling latency, we repeat
the pair for 10 times and take the interval difference average.
Figure 11(a) illustrates this procedure.

One caveat is that we need to know how large t1 is so
that the second request suffers from DRX doze latency. We
increase the interval t1 gradually until a certain spike appears
in measured RTT for the second request, caused by DRX
doze latency (≈30ms as shown in §3). The time interval
between the first response and the second request that triggers
such spike infers Tinactivity_timer. We can thus infer Tdrx_doze =
t2− t1. We take the max in multiple rounds as Tdrx_doze_max.
Inferring scheduling-related parameters LRP needs
Tsr_grant to reduce the scheduling latency (§5.2). Figure 11(b)
shows how LRP infers it. We let t1 as 0 by sending both re-
quests together. As we just showed, the grant is sufficient for
a single request packet. We increase the size of the second
request so that the grant will not be sufficient for both request
packets. According to the scheme, the first request experi-
ences only scheduling latency while the second experiences
the same scheduling latency plus Tbsr_grant , which equals to
Tsr_grant under a same BS. We thus can derive LRP optimiza-
tion parameter Tsr_grant from the measured t2 as Tsr_grant = t2.

5.5 Miscellaneous Issues

Energy Analysis LRP incurs extra energy overhead from
four sources. First, transmitting a rouser incurs a longer
ON period. The time to send a rouser can be as long as
Tsr_periodicity + Tsr_grant . It incurs Tsr_periodicity/2 + Tsr_grant

on average. Second, Tdrx_doze is not predictable so we se-
lect Tdrx_doze_max to prioritize latency over energy. The extra
ON period is δ = Tdrx_doze_max − Tdrx_doze for each rouser.
If the packet arrives during DRX OFF, Tdrx_doze_max equals
to Tdrx_doze and δ = 0. Otherwise, Tdrx_doze = 0 and δ =
Tdrx_doze_max. The expectation of δ is thus pon ·Tdrx_doze_max,
where pon is the probability of a packet arriving during
DRX ON period. If we ignore background traffic and as-
sume the packet arrives in the buffer at a random time,
pon = onDurationTimer / DRX cycle. Third, an early rouser
(due to inaccurate estimation) also causes a longer ON period.
Denote ε as the estimation error. When the rouser arrives dur-
ing DRX OFF, the extra ON period is ε. Otherwise, ε incurs
no extra ON period. Finally, sending extra small messages
incurs extra energy waste.

Impact on the spectrum efficiency For every
data packet, we define its spectrum efficiency SE =

sizeof (data packet)
sizeof (Total UL resource granted) . When a data packet suffers from
doze latency and LRP sends a rouser, it reduces SE by half:
the rouser and the prefetcher initiate two grants, while the
legacy LTE only requests for one. The extra grant occupies
≈2 RB in commercial networks. LRP trades-off SE for low
latency. When LRP sends a prefetcher only, two scenarios
arise. In the normal case, the grant from SR can carry both
the data packet and a prefetcher. Therefore, LRP requests
no extra grant and SE is the same as the legacy LTE. In
the corner case discussed in §5.2, the BS allocates at most
sizeof (prefetcher) extra grant. One extra RB is thus wasted,
since a single RB is sufficient to carry a prefetcher. SE is re-
duced by sizeof (prefetcher)

sizeof (prefetcher + grant from SR) . This value multiplying
the probability of the corner case (see Appendix B) yields the
expectation of SE reduction.

Impact of background traffic LRP still reduces latency in
the presence of background traffic. No matter whether the
background packet is sent before a rouser or between a rouser
and a data packet, the rouser will keep the data packet at the
DRX ON state, thus eliminating the DRX doze latency. On
scheduling latency, if the background traffic is sent after the
data packet, it does not affect the prefetcher. If the background
traffic is in between, the prefetcher reduces its latency, which
indirectly reduces latency for the real data packet. It still does
not increase the latency compared to legacy LTE without LRP.
When the background traffic is sent before a prefetcher, it will
be sent out through BSR before the data packet in the worst
case, equivalent to no optimization.

What if the uplink traffic is not strictly regular? While
mobile sensors produce regular data packets, the actual uplink

478 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

LRP	Daemon Mobile	App

																																																		Android	Kernel											LTE	Radio	Firmware

LTE	Inference	Engine

Latency	Manager
DRX	Doze	Reduc>on

Scheduling	Reduc>on

……
startParInf()
SensorManager.registerListener(listener)
setInterval(t)
……
listener.onSensorChanged��{
				uploadData()
				reduceDozeAndSchedule()
}

Figure 12: Implementation of LRP in Android.

data packets might not be strictly periodic. This can be caused
by mobile OS overhead, prediction inaccuracy, or sensor peri-
odicity variance. LRP still guarantees no worse latency than
legacy LTE, and saves LTE latency in most scenarios. We
show the following Theorem 5.1 and prove it in Appendix C.

Theorem 5.1. For the data packet that should have arrived
at Tinterval but actually arrives at T , LRP does not incur extra
latency compared with the legacy 4G LTE.

LRP for non-regular traffic For those ML/AI apps of §2
with irregular but predictable uplink traffic, LRP works equally
well. For others with irregular yet unpredictable uplink traffic,
we do not recommend LRP for such apps. If users intend to
use our APIs, latency reduction cannot be ensured.

Applicability to 5G In principle, LRP is applicable to 5G,
which has three usage cases. Enhanced Mobile Broadband
(eMBB) extends the current 4G technology. Massive Machine
Type Communication (mMTC) is for cellular IoT devices. Its
design is based on LTE-M and NB-IoT [8]. The scheduling
mechanisms of both modes largely remain unchanged [3, 4].
LRP is still applicable. Ultra Reliable Low Latency Commu-
nications (URLLC) targets low-latency communication. The
potential grant-free scheduling might partially achieve LRP’s
latency reduction, but LRP’s DRX doze latency reduction will
still help the URLLC applications.

Network impact LRP incurs little overhead on the network
side. The overhead stems from processing extra signaling,
which is marginal compared with normal operations. This
is because the BS monitors the control and data channels
continuously, regardless of whether it receives an SR.

Impact on other users If the devices under a BS all use
LRP, they will still benefit from LRP. The core idea of LRP
is to schedule a device’s allocated resources in advance if its
data arrival can be predicted. The procedure does not sacrifice
other users’ access in general. Moreover, if certain device
does not adopt LRP, its latency may be slightly prolonged.
This arises when the BS assigns the last available resource to
an LRP user who advances its scheduling, while this resource
could have been available to the non-LRP user. However, the
impact is minimal, as the BS will serve the user the next
subframe (in 1ms) and the throughput is not affected.

6 Implementation

We implement LRP as a standalone user-space daemon with
Android NDK. A similar implementation is also feasible for

iOS. Figure 12 shows its key components, including a latency
manager for latency reduction with conflict resolution in §5.1–
5.3, an inference engine that offers key parameters for LRP
based on the solutions in §5.4, and a set of APIs for latency-
sensitive applications. To use LRP, a latency-sensitive mobile
app requests LRP service using its APIs as detailed below. At
runtime, LRP first detects if the device connects to a new base
station by checking the change of serving cell ID. Upon cell
changes, LRP starts to infer the key LTE parameters for this
new cell. Once the key parameters are obtained, LRP initiates
its latency manager to reduce DRX doze latency in §5.1 and
scheduling latency in §5.2, and resolves the conflicts in §5.3.

APIs LRP provides easy-to-use application-layer APIs for
mobile application developers. Figure 12 showcases these
APIs with a mobile VR application. The app first calls start-
ParInf() so that LRP daemon starts and infers the LTE parame-
ters relevant to latency reduction components. The daemon
detects possible parameter changes (say, upon handover) and
re-runs the inference procedure whenever necessary. As our
VR application uploads periodic sensory data packets, it calls
setInterval(t) to inform LRP such periodicity. Whenever a data
packet is sent, the application calls reduceDozeAndSchedule()
for LRP to reduce latency for the next packet.

Latency manager It realizes the latency reduction in §5.1–
5.2 and conflict resolution in §5.3. A practical issue to realize
them is to optimize the dummy packet’s construction and
delivery for low cost. Both prefetcher and rouser messages in
LRP should be as small as possible so that extra data overhead
is minimized. In addition, a smaller prefetcher will decrease
the likelihood of the corner case discussed in §5.2. The small-
est packet we could generate in the Android device without
root is an ICMP ping packet with IP header only via system
command. Our implementation issues only one small ICMP
packet to the local gateway in LTE that serves the users.

LTE inference engine It infers the key LTE parameters
for LRP’s latency reduction based on the approaches in §5.4.
We use DNS requests/responses as probing packets, which
have low deployment cost (by using LTE’s readily-available
DNS servers) and higher accuracy (compared to other probing
packets delivered with low priority such as ICMP). For DNS
servers, LTE assigns its own in-network DNS server when the
device attaches to it, which provides fast and stable service.
We use such DNS servers for our experiment.

Moreover, we note that simply running the inference in
§5.4 may be inaccurate in practice, since it is sensitive to the
noises from background traffic, vendor-specific base station
behaviors, and server load. To this end, we optimize our imple-
mentation to mitigate these noises and improve the inference
accuracy. Specifically, we add a few filters to get rid of the
noises. For instance, when measuring the scheduling-related
parameters, we know that Trtt should be greater than 4ms in
reality, therefore, if the packet response pair is received within
4ms, we ignore this round of experiment.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 479

App AT&T Verizon T-Mobile Sprint China Mobile
Leg LRP η Leg. LRP η Leg. LRP η Leg. LRP η Leg. LRP η

Mobile VR Med. N/A N/A N/A 12.0 8.0 0.5× 11.0 6.0 0.8× N/A N/A N/A N/A N/A N/A
95% N/A N/A N/A 28.0 15.0 0.9× 40.0 14.0 1.9× N/A N/A N/A N/A N/A N/A

Gaming Med. 10.0 6.0 0.7× 9.0 7.0 0.3× 9.0 7.0 0.3× 17.0 11.0 0.5× 4.0 3.0 0.3×
95% 17.0 15.0 0.1× 15.0 15.0 0× 15.0 15.0 0× 27.0 21.0 0.3× 10.0 5.0 1.0×

Localization Med. 38.0 5.0 6.6× 50.0 14.0 2.6× 42.0 5.0 7.4× 30.5 14.0 1.2× 11.0 3.5 2.1×
95% 46.0 14.0 2.3× 59.0 23.0 1.6× 48.0 10.0 3.8× 61.7 25.8 1.4× 22.0 6.0 2.7×

Object Med. 23.0 7.0 2.3× 38.0 9.0 3.2× 33.0 5.0 5.6× 30.0 15.0 1.0× 14.0 6.0 1.3×
Detection 95% 47.8 16.0 2.0× 51.0 15.3 2.3× 45.0 10.0 3.5× 59.0 27.5 1.1× 22.0 17.0 0.3×

NOTE: Mobile VR is evaluated under Verizon and T-Mobile only. Other operators’ firewalls block the VR traffic. Leg: Legacy LTE. Med: Median.

Table 4: Uplink network latency (ms) reduction by LRP in evaluations with four apps. η=(Legacy-LRP)/LRP.

7 Evaluation

We assess how LRP improves the overall latencies and QoEs
for emergent mobile applications, evaluate the effectiveness
of solution components in LRP, and quantify LRP’s overhead.
Experimental setup We run LRP on Google Pixel, Pixel
2, Pixel XL, and Pixel 5. We quantify the latency reduction
in both US and China over AT&T, Verizon, T-Mobile, Sprint,
and China Mobile. The evaluation covers 375 unique cells.
We repeat the tests in static, walking (∼1m/s), and driving
(∼30mph) scenarios. We do experiments mostly in metropoli-
tan areas while driving tests cover rural areas as well. The
radio signal strength varies from -120 to -80dBm, covering
good (>-90dBm), fair ([-105, -90dBm]), and bad (<-105dBm)
conditions. To quantify LRP’s latency reduction, we use Mo-
bileInsight [32] to extract the ground truth of fine-grained
per-packet latency breakdown from the chipset.

To gauge LRP’s impact on the network side, we build a
USRP-based testbed. A server with Intel i7-9700k CPU and
32G RAM runs srsLTE [20] for the functions of core network
and BS processing. A USRP B210 connects to the server
and provides wireless access for the devices. We plug sys-
moUSIM [47] into the test phones, and register them.

7.1 Overall Benefits for the Applications
We showcase LRP’s latency reduction and QoE improvements
with four representative emergent mobile applications:
◦ Mobile VR. We use the showcase VR game as described
in §2. We measure the latency of the sensor data and control
data, and use it to gauge how our design reacts to VR games.
◦ Localization. We write an Android app that uploads the
periodic GPS location status to the cloud via the Android
API [21]. We encode each location update in 22 bytes and
send it to the cloud every second.
◦ Object recognition. We prototype an object recognition app
using MobileNetV2 [43], a phone-based deep learning model.
The app processes camera frames and uploads the recognition
result to the cloud. The typical inference time is 250ms.
◦Gaming. We evaluate its latency by replaying the traces from
PUBG Mobile [40], one of the most popular multi-player on-
line mobile games. Since PUBG traffic is not strictly regular,

we use it to demonstrate the effectiveness of LRP as discussed
in §5.5. We use the traffic emulator to send data packets based
on the trace.

Overall LTE latency reduction Table 4 and Figure 13
show LRP’s latency reduction for these apps in static settings
with fair-good signal strength; other scenarios have similar re-
sults as detailed in §7.2. On average, LRP achieves 4-5ms (0.5-
0.8×) latency reduction in mobile VR, 8-37ms (1.2-7.4×)
reduction in localization, 8-29ms (1.0-5.6×) reduction in ob-
ject detection, and 1-6ms (0.3-0.7×) reduction in gaming for
all 5 LTE carriers. Our breakdown analysis further shows
these apps suffer from different latency bottlenecks. For the
localization and object detection, the majority of data packets
suffer from both DRX doze and scheduling latency. For the
VR and gaming with more frequent packets, the scheduling
latency is the major latency bottleneck. LRP can reduce both
bottleneck latencies and thus benefit all these applications.

QoE improvement To showcase the impact of LRP on the
mobile VR, we conduct a user study with 10 participants to
evaluate the subjective experiences of using VR with/without
LRP. Figure 14 shows the average Mean Opinion Score (MOS)
on three aspects: graphical visual quality, responsiveness, and
overall experience. Participants rate 1 (Bad) to 5 (Excellent)
on these three aspects of the VR game with constant head
position changes. The results show that LRP can improve
the visual quality by 8% (3.1→4.0), responsiveness by 63%
(2.4→3.9), and overall experience by 46% (2.4→3.5).

5G latency reduction We evaluate how LRP reduces 5G
latency under AT&T 5G network. Since we do not have access
to its fine-grained data-plane traces, we measure RTT at the
application layer. LRP reduces RTT by 4.6ms for Gaming,
20.5ms for Localization, and 19.8ms for Object Detection.
The results are similar to the latency reduction in AT&T 4G.

7.2 Micro-Benchmarks
We next assess LRP’s solution components under various sig-
nal strengths and user mobility patterns.

DRX-induced latency reduction (§5.1) As shown in §5.1,
LRP helps reduce the DRX doze latency if the inter-packet
interval larger than Tinactivity_timer (otherwise the DRX doze
latency is always 0 with/without LRP). Figure 15 shows LRP’s

480 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 5 10 15 20 25
Latency(ms)

0

50

100
CD

F(
%

)

Legacy
LRP

(a) Mobile VR

0 5 10 15 20 25
Latency(ms)

0

50

100

CD
F(

%
)

Legacy
LRP

(b) Gaming

0 10 20 30 40 50 60
Latency(ms)

0

50

100

CD
F(

%
)

Legacy
LRP

(c) Localization

0 10 20 30 40 50 60
Latency(ms)

0

50

100

CD
F(

%
)

Legacy
LRP

(d) Object Detection
Figure 13: LTE latency with and without LRP in representative apps.

Quality Responsiveness Overall0
1
2
3
4
5

M
OS

Legacy
LRP

Figure 14: MOS of mobile VR.
0 10 20 30 40 50 60 70 80

Latency(ms)
0

25
50
75

100

CD
F(

%
)

LRP
AT&T-Legacy
Verizon-Legacy

0 10 20 30 40 50 60 70 80
Latency(ms)

0
25
50
75

100

CD
F(

%
)

LRP
Poor-legacy
Fair-legacy
Good-legacy

0 10 20 30 40 50 60 70 80
Latency(ms)

0
25
50
75

100

CD
F(

%
)

LRP
Static-legacy
Walking-legacy
Driving-legacy

Figure 15: LRP reduces DRX doze under different operators, signals, and mobility.

Scenario AT&T Verizon T-Mobile Sprint China Mobile
Leg. LRP η Leg. LRP η Leg. LRP η Leg. LRP η Leg. LRP η

Static-Poor Med. 12.0 5.0 1.4× 12.0 9.0 0.3× 11.0 7.0 0.6× 20.0 12.0 0.7× 16.0 5.0 2.2×
95% 17.0 11.0 0.5× 17.0 17.0 0× 17.0 16.0 0.1× 30.0 26.0 0.2× 26.0 23.0 0.1×

Static-Fair Med. 13.0 8.0 0.6× 11.0 8.0 0.4× 17.0 13.0 0.3× 18.0 14.0 0.3× 14.0 4.0 2.5×
95% 17.0 15.0 0.1× 17.0 13.0 0.3× 12.0 6.0 1.0× 32.0 29.0 0.1× 24.0 10.0 1.4×

Static-Good Med. 13.0 6.0 1.2× 10.0 5.0 1.0× 8.0 6.0 0.3× 13.0 7.0 0.9× 13.0 4.0 2.3×
95% 17.0 11.0 0.5× 17.0 16.0 0.1× 16.0 11.0 0.5× 27.0 18.0 0.5× 24.0 9.0 1.7×

Walking Med. 11.0 8.0 0.4× 13.0 6.0 1.2× 12.0 7.0 0.7× 19.0 13.0 0.5× 16.0 9.0 0.8×
95% 17.0 11.0 0.5× 16.0 16.0 0× 17.0 16.0 0.1× 30.0 26.0 0.2× 30.0 26.0 0.2×

Driving Med. 14.0 8.0 0.8× 14.0 8.0 0.8× 12.0 8.0 0.5× 17.0 13.0 0.3× 17.0 10.0 0.7×
95% 18.0 17.0 0.1× 17.0 11.0 0.5× 17.0 16.0 0.1× 29.0 27.0 0.1× 37.0 28.0 0.3×

Table 5: Scheduling latency (ms) in five mobile carriers. η=(Legacy-LRP)/LRP.

DRX latency reduction under various signal strengths and
mobility patterns. We run this test under the most popular set-
ting of Tinactivity_timer = 200ms (Table 3) when the inter-packet
interval is 1.5 ·Tinactivity_timer. We also test other intervals and
get similar results. In all scenarios, LRP reduces the DRX
doze latency to 0 for all LTE carriers. This results in 21–41ms
mean latency reduction and 40–57ms 95% latency reduction.

Scheduling latency reduction (§5.2) We next quantify the
reduction in uplink scheduling latency. The latency reduction
ratio, η, is defined as that of the reduced latency and the
LRP latency. Table 5 shows the results in different carriers,
signal strengths, and mobility patterns. In all these scenarios,
LRP reduces the median scheduling latency by 0.3-2.5×, and
reduces the 95th latency by up to 1.7×.

Conflict handling for latency reduction (§5.3) We con-
firm the effectiveness of LRP’s conflict resolution/avoidance.
We adapt LRP’s APIs to enable/disable the conflict handling in
§5.3. Table 6 compares the overall latency with/without LRP’s
conflict handling. We first illustrate LRP can resolve rouser
and prefetcher conflict. We use Localization as its traffic pat-
tern satisfies the condition (long interval) for potential conflict.
Compared with no conflict resolution, LRP reduces extra 8.82-
60.0% latency in all operators. We next evaluate how LRP
handles data and dummy packets conflicts. The heavy traffic
in the Gaming application potentially causes such conflict.
We run the Gaming application with LRP and the APIs with-
out conflict avoidance. Compared with no conflict avoidance,
LRP reduces up to 20% extra latency.

Accuracy of critical parameter inference (§5.4) We fi-
nally check how accurate our LTE parameter inference is.

Conflicts AT&T Ver. T-M. Spr. C. M.

rouser &
prefetcher

w/o Res. 28.0 30.0 34.0 10.0 13.0
LRP 33.0 36.0 37.0 16.0 16.0

Extra Red. 17.9% 20.0% 8.82% 60% 23.0%

Data &
dummy

w/o Res. 3.5 2.0 2.0 5.0 2.0
LRP 4.0 2.0 2.0 6.0 2.0

Extra Red. 14.3% 0.0% 0.0% 20% 0.0%
Table 6: Latency (ms) reduction with conflict handle.

AT&T Verizon T-Mobile Sprint C. Mobile
Infer Trtt 3.2% 1.5% 2.0% 3.0% 2.0%

Infer Tdrx_doze_max 3.0% 1.3% 3.0% 1.3% 2.5%

Table 7: Error rate of LRP parameter inference.

For each cell, we first collect ground truth by analyzing the
physical/link/RRC-layer signaling messages from MobileIn-
sight. We then use LRP component to infer the parameters
and compare them with the ground truth. We calculate the
average error rate in terms of inference. The results are shown
in Table 7. As we can see, the inference error rate is at most
3.2% for both parameters in all 5 operators. LRP inference is
accurate as argued in §5.4 and §6.

7.3 Overhead

Overhead of dummy messages The dummy messages
may incur additional data usage and thus billing. Table 8
shows that LRP incurs no more than 0.6KB data per second
under all carriers. The data overhead depends on the frequency
of calling LRP APIs. For heavy traffic applications (VR, Gam-
ing), the extra overhead is 0.33KB/s while the number for the
other two apps is 0.05KB/s. The overhead is acceptable in
typical data plans and the extra data is only incurred when
LRP APIs are called. As explained in §6, LRP has minimized
the use of dummy for efficient latency reduction.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 481

AT&T Verizon T-Mobile Sprint C. Mobile
Extra Data (KB/s) 0.20 0.15 0.41 0.23 0.60

Extra Sig. Msg 3.8% 3.7% 4.3% 3.3% 1.1%
Energy Overhead 1.7% 4.2% 5.8% 2.1% 4.7%

Table 8: Overhead of LRP.

Extra signaling message The dummy messages incur ex-
tra signaling between the device and the BS. We measure this
overhead as shown in Table 8. LRP incurs up to 4.3% mes-
sages, which are marginal compared with the total volume
of signaling messages. Reducing latency for apps with DRX
doze generates more messages. LRP incurs on average 1.6
extra signaling messages per second for Location and Object
Detection. While the other two apps with LRP generate 0.8
extra message every second on average.

Energy consumption While LRP exploits the DRX for
lower latency, it still respects the LTE’s energy saving with
accurate timing control and incurs marginal energy cost. We
first compare the percentage of the extra ON period with and
without LRP. We track the CDRX events with MobileInsight.
As shown in Table 8, for all carriers, at most 5.8% of extra
ON period is invoked. Furthermore, we fully charge the de-
vice and run Object Detection (with DRX doze) and VR (no
DRX doze) applications for one hour, and compare the energy
consumption with or without LRP. With LRP, two applications
incur 2.5% (16.12% to 16.52% of total battery) and 1.0%
(37.04% to 37.40% of total battery) extra battery consump-
tion, respectively. This overhead is marginal, as we adjust the
timing of rousers to reduce unnecessary energy waste.

Network impact We measure the network impact of LRP
in our SDR testbed. Even in the absence of data transfer, the
server spends 0.055ms on average to process the collected
signal in every subframe (1ms). In contrast, processing LRP’s
extra signaling costs 0.002ms, about 3.6% extra overhead.

Impact on other users We next examine whether LRP
affects those non-LRP users. We test a two-device scenario,
with both running the Gaming app. Device A never uses LRP,
whereas device B turns on/off LRP in the test. When B does
not run LRP, A’s average uplink network latency is 15.79ms,
and the 95th percentile is 24.0ms. When B activates LRP, A’s
average latency becomes 15.84ms and the 95th percentile is
24.0ms. Both numbers are not visibly affected. Therefore,
the latency of non-LRP device is not affected, regardless of
whether the other runs LRP or not.

8 Related Work

Many cross-layer techniques have been designed to improve
user experience and application performance in mobile net-
works (see [19] for a survey). They use lower-layer informa-
tion to improve video streaming [54], to optimize Web access
[12, 26, 34, 35, 51], to name a few. Most such solutions seek
to boost the application-perceived throughput. Other recent
proposals detect whether LTE is the bottleneck for applica-
tions [9], estimate the radio link speed [11], or examine how

LTE configurations affect applications [25]. In contrast, we
focus on devising LTE latency-oriented reduction solutions.

Early efforts are also made to reduce the LTE network
latency. They analyze the latency for Web access over LTE
[39, 53], devise application-specific solutions to LTE schedul-
ing latency with modified modem firmware [48], measure
the impact of DRX upon LTE from the energy perspective
[23], and adjust the RRC parameters to reduce data-plane la-
tency with infrastructure update [38]. Recent work [9, 30] also
makes device-based throughput prediction for performance
improvement. Our work differs from them since we work on
the latency elements that cannot be eliminated with higher
throughput. Authors from [16, 33] target reducing one-time
connection setup latency, while LRP reduces latency elements
for every data packet in the connected state. Other recent ef-
forts seek to refine the 4G/5G network infrastructure [24, 37].
In contrast, we propose an effective solution without root
privilege, device firmware change, or infrastructure upgrade.

9 Conclusion
Reducing latency is critical to many delay-sensitive applica-
tions, such as mobile AR/VR, mobile gaming, sensing, ma-
chine learning, and robot/drone-based image/speech recogni-
tion. In mobile networks like 4G LTE, reducing uplink latency
is more challenging than its downlink counterpart, since it
involves multiple latency elements stemming from power-
saving, scheduling, on-demand resource allocation, etc.

We have designed and implemented LRP, a device-based
solution to LTE latency reduction without any infrastructure
changes. LRP does not require root privilege at the device
and works with mobile apps directly. It ensures the network
latency is no worse than the legacy 4G LTE, and is applica-
ble to the upcoming 5G. By design, LRP uses small dummy
messages with proper timing control and conflict handling,
in order to eliminate unnecessary latency components from
scheduling and power-saving operations. Our experiments
have confirmed its effectiveness with a variety of mobile apps.

In the broader context, reducing latency poses a more chal-
lenging problem than improving throughput for the networked
system community. In the mobile network domain, various
tricks have been invented for boosting throughput (e.g., mas-
sive MIMO, more sophisticated modulation, mmWave, etc.).
This is not the case for latency. Both its fundamental theory
and effective practice are lacking. Moreover, exploring pure
device-based solution, which does not require root privilege
and has direct access to user application-level information,
offers a nice complement to the infrastructure-centric design,
which typically takes years to be deployed.
Acknowledgments We greatly appreciate our shepherd Dr. Lin
Zhong and the anonymous reviewers for their constructive feedbacks
and advices to help improve the quality of this work. We also thank
Mr. Kaiyuan Chen and other members at UCLA WiNG for their
early effort and feedback. This work is supported in part by NSF
CNS-1910150 and CNS-2008026.

482 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] 3GPP. TS36.213: Evolved Universal Terrestrial Ra-
dio Access (E-UTRA); Physical layer procedures, Sep.
2019.

[2] 3GPP. TS36.321: Evolved Universal Terrestrial Radio
Access (E-UTRA); Medium Access Control (MAC) pro-
tocol specification, Sep. 2019.

[3] 3GPP. TS38.331: NR; Radio Resource Control (RRC);
Protocol specification, Oct. 2019.

[4] 3GPP. TS36.331: Radio Resource Control (RRC), 2020.

[5] Michael Abrash. What VR Could, Should,
and almost certainly Will be within two years.
http://media.steampowered.com/apps/
abrashblog/Abrash%20Dev%20Days%202014.pdf,
2014.

[6] Mikhail Afanasov, Alessandro Djordjevic, Feng Lui, and
Luca Mottola. Flyzone: A testbed for experimenting
with aerial drone applications. In Proceedings of the
17th Annual International Conference on Mobile Sys-
tems, Applications, and Services, pages 67–78, 2019.

[7] Amazon. Amazon Alexa. https://www.amazon.com/
Amazon-Echo-And-Alexa-Devices/b?ie=UTF8&
node=9818047011, Mar. 2020.

[8] Pilar Andres-Maldonado, Pablo Ameigeiras, Jonathan
Prados-Garzon, Jorge Navarro-Ortiz, and Juan M Lopez-
Soler. Narrowband iot data transmission procedures for
massive machine-type communications. IEEE Network,
31(6):8–15, 2017.

[9] Arjun Balasingam, Manu Bansal, Rakesh Misra, Kanthi
Nagaraj, Rahul Tandra, Sachin Katti, and Aaron Schul-
man. Detecting if lte is the bottleneck with bursttracker.
In The 25th Annual International Conference on Mobile
Computing and Networking, pages 1–15, 2019.

[10] Tristan Braud, Farshid Hassani Bijarbooneh, Dimitris
Chatzopoulos, and Pan Hui. Future networking chal-
lenges: The case of mobile augmented reality. In 2017
IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pages 1796–1807. IEEE,
2017.

[11] Nicola Bui, Foivos Michelinakis, and Joerg Widmer.
Fine-grained lte radio link estimation for mobile phones.
Pervasive and Mobile Computing, 49:76–91, 2018.

[12] Yi Cao, Javad Nejati, Aruna Balasubramanian, and An-
shul Gandhi. Econ: Modeling the network to improve
application performance. In Proceedings of the Internet
Measurement Conference, pages 365–378, 2019.

[13] Jiasi Chen and Xukan Ran. Deep learning with
edge computing: A review. Proceedings of the IEEE,
107(8):1655–1674, 2019.

[14] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng,
Paramvir Bahl, and Hari Balakrishnan. Glimpse: Contin-
uous, real-time object recognition on mobile devices. In
Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems, pages 155–168, 2015.

[15] Open AR Cloud. Open AR Cloud. https://www.
openarcloud.org/, Mar. 2020.

[16] Edith Cohen and Haim Kaplan. Prefetching the means
for document transfer: A new approach for reducing web
latency. In INFOCOM 2000, volume 2, pages 854–863.
IEEE, 2000.

[17] Google Daydream. https://arvr.google.com/
daydream/.

[18] WebRTC for Unity. https://github.com/
Unity-Technologies/com.unity.webrtc.

[19] Bo Fu, Yang Xiao, Hongmei Julia Deng, and Hui Zeng.
A survey of cross-layer designs in wireless networks.
IEEE Communications Surveys & Tutorials, 16(1):110–
126, 2013.

[20] Ismael Gomez-Miguelez, Andres Garcia-Saavedra,
Paul D Sutton, Pablo Serrano, Cristina Cano, and Doug J
Leith. srsLTE: An open-source platform for LTE evo-
lution and experimentation. In Proceedings of the
Tenth ACM International Workshop on Wireless Network
Testbeds, Experimental Evaluation, and Characteriza-
tion, pages 25–32, 2016.

[21] Google. Google API for Android, Mar. 2020.

[22] Giulio Grassi, Kyle Jamieson, Paramvir Bahl, and Gio-
vanni Pau. Parkmaster: An in-vehicle, edge-based video
analytics service for detecting open parking spaces in
urban environments. In Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, pages 1–14,
2017.

[23] Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley
Mao, Subhabrata Sen, and Oliver Spatscheck. A close
examination of performance and power characteristics
of 4g lte networks. In Proceedings of the 10th interna-
tional conference on Mobile systems, applications, and
services, pages 225–238, 2012.

[24] Aman Jain, NS Sadagopan, Sunny Kumar Lohani, and
Mythili Vutukuru. A comparison of sdn and nfv for re-
designing the lte packet core. In 2016 IEEE Conference
on Network Function Virtualization and Software De-
fined Networks (NFV-SDN), pages 74–80. IEEE, 2016.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 483

http://media.steampowered.com/apps/abrashblog/Abrash%20Dev%20Days%202014.pdf
http://media.steampowered.com/apps/abrashblog/Abrash%20Dev%20Days%202014.pdf
https://www.amazon.com/Amazon-Echo-And-Alexa-Devices/b?ie=UTF8&node=9818047011
https://www.amazon.com/Amazon-Echo-And-Alexa-Devices/b?ie=UTF8&node=9818047011
https://www.amazon.com/Amazon-Echo-And-Alexa-Devices/b?ie=UTF8&node=9818047011
https://www.openarcloud.org/
https://www.openarcloud.org/
https://arvr.google.com/daydream/
https://arvr.google.com/daydream/
https://github.com/Unity-Technologies/com.unity.webrtc
https://github.com/Unity-Technologies/com.unity.webrtc

[25] Fabian Kaup, Foivos Michelinakis, Nicola Bui, Joerg
Widmer, Katarzyna Wac, and David Hausheer. Assess-
ing the implications of cellular network performance on
mobile content access. IEEE Transactions on Network
and Service Management, 13(2):168–180, 2016.

[26] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian,
and Samir R Das. Improving user perceived page load
times using gaze. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation, pages 545–
559, 2017.

[27] Ronny Krashinsky and Hari Balakrishnan. Minimiz-
ing energy for wireless web access with bounded slow-
down. In Proceedings of the 8th annual international
conference on Mobile computing and networking, pages
119–130, 2002.

[28] Kaspersky Lab. Rooting your android: Advantages,
disadvantages, and snags. https://www.kaspersky.
com/blog/android-root-faq/17135/, Jun. 2017.

[29] Zeqi Lai, Y Charlie Hu, Yong Cui, Linhui Sun, Ning-
wei Dai, and Hung-Sheng Lee. Furion: Engineering
high-quality immersive virtual reality on today’s mo-
bile devices. IEEE Transactions on Mobile Computing,
2019.

[30] Jinsung Lee, Sungyong Lee, Jongyun Lee,
Sandesh Dhawaskar Sathyanarayana, Hyoyoung
Lim, Jihoon Lee, Xiaoqing Zhu, Sangeeta Ramakrish-
nan, Dirk Grunwald, Kyunghan Lee, et al. PERCEIVE:
Deep Learning-based Cellular Uplink Prediction Using
Real-Time Scheduling Patterns. In Proceedings of
the 18th International Conference on Mobile Systems,
Applications, and Services (MobiSys’20), pages
377–390, 2020.

[31] Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes
Kopf, Yury Degtyarev, Sergey Grizan, Alec Wolman,
and Jason Flinn. Outatime: Using speculation to en-
able low-latency continuous interaction for mobile cloud
gaming. In Proceedings of the 13th Annual Interna-
tional Conference on Mobile Systems, Applications, and
Services, pages 151–165, 2015.

[32] Yuanjie Li, Chunyi Peng, Zengwen Yuan, Jiayao Li, Hao-
tian Deng, and Tao Wang. Mobileinsight: Extracting and
analyzing cellular network information on smartphones.
In Proceedings of the 22nd Annual International Con-
ference on Mobile Computing and Networking, pages
202–215, 2016.

[33] Yuanjie Li, Zengwen Yuan, and Chunyi Peng. A control-
plane perspective on reducing data access latency in lte
networks. MobiCom ’17, pages 56–69, New York, NY,
USA, 2017. ACM.

[34] Ravi Netravali and James Mickens. Prophecy: Acceler-
ating mobile page loads using final-state write logs. In
15th USENIX Symposium on Networked Systems Design
and Implementation, pages 249–266, 2018.

[35] Ravi Netravali, Vikram Nathan, James Mickens, and
Hari Balakrishnan. Vesper: Measuring time-to-
interactivity for web pages. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation,
pages 217–231, 2018.

[36] Ravi Netravali, Anirudh Sivaraman, James Mickens, and
Hari Balakrishnan. Watchtower: Fast, secure mobile
page loads using remote dependency resolution. In Pro-
ceedings of the 17th Annual International Conference
on Mobile Systems, Applications, and Services, pages
430–443, 2019.

[37] Akanksha Patel, Mythili Vutukuru, and Dilip Krish-
naswamy. Mobility-aware vnf placement in the lte epc.
In 2017 IEEE Conference on Network Function Virtu-
alization and Software Defined Networks (NFV-SDN),
pages 1–7. IEEE, 2017.

[38] Guillermo Pocovi, Ilaria Thibault, Troels Kolding, Mads
Lauridsen, Rame Canolli, Nick Edwards, and David Lis-
ter. On the suitability of lte air interface for reliable low-
latency applications. In 2019 IEEE Wireless Commu-
nications and Networking Conference (WCNC), pages
1–6. IEEE, 2019.

[39] Behnam Pourghassemi, Ardalan Amiri Sani, and Aparna
Chandramowlishwaran. What-if analysis of page load
time in web browsers using causal profiling. Proceed-
ings of the ACM on Measurement and Analysis of Com-
puting Systems, 3(2):1–23, 2019.

[40] PUBG. PUBG. https://www.pubg.com/, Mar. 2020.

[41] Qualcomm. QxDM Professional - QUALCOMM eX-
tensible Diagnostic Monitor. http://www.qualcomm.
com/media/documents/tags/qxdm.

[42] Unity Technologies Report. https://www.tweaktown.
com/news/74682/index.html.

[43] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: In-
verted residuals and linear bottlenecks. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 4510–4520, 2018.

[44] Shu Shi, Varun Gupta, and Rittwik Jana. Freedom: Fast
recovery enhanced vr delivery over mobile networks.
In Proceedings of the 17th Annual International Con-
ference on Mobile Systems, Applications, and Services,
pages 130–141, 2019.

484 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.kaspersky.com/blog/android-root-faq/17135/
https://www.kaspersky.com/blog/android-root-faq/17135/
https://www.pubg.com/
http://www.qualcomm.com/media/documents/tags/qxdm
http://www.qualcomm.com/media/documents/tags/qxdm
https://www.tweaktown.com/news/74682/index.html
https://www.tweaktown.com/news/74682/index.html

[45] Apple Siri. Siri. https://www.apple.com/siri/,
Mar. 2020.

[46] Unity Render Streaming. https://github.com/
Unity-Technologies/UnityRenderStreaming.

[47] sysmocom. sysmoUSIM-SJS1 SIM + USIM Card
(10-pack). http://shop.sysmocom.de/products/
sysmousim-sjs1, 2016.

[48] Zhaowei Tan, Yuanjie Li, Qianru Li, Zhehui Zhang, Zhe-
han Li, and Songwu Lu. Supporting mobile vr in lte
networks: How close are we? Proceedings of the ACM
on Measurement and Analysis of Computing Systems,
2(1):1–31, 2018.

[49] Uber. Uber. https://www.uber.com/, Mar. 2020.

[50] Waze. Waze. https://www.waze.com/, Mar. 2020.

[51] Xiufeng Xie, Xinyu Zhang, and Shilin Zhu. Accelerat-
ing mobile web loading using cellular link information.
In Proceedings of the 15th Annual International Con-
ference on Mobile Systems, Applications, and Services,
pages 427–439, 2017.

[52] Ming Yang and Tom Chin. Scheduling request during
connected discontinuous reception off period, July 20
2017. US Patent App. 14/996,153.

[53] Zengwen Yuan, Yuanjie Li, Chunyi Peng, Songwu Lu,
Haotian Deng, Zhaowei Tan, and Taqi Raza. A machine
learning based approach to mobile network analysis. In
2018 27th International Conference on Computer Com-
munication and Networks (ICCCN), pages 1–9. IEEE,
2018.

[54] Anfu Zhou, Huanhuan Zhang, Guangyuan Su, Leilei
Wu, Ruoxuan Ma, Zhen Meng, Xinyu Zhang, Xiufeng
Xie, Huadong Ma, and Xiaojiang Chen. Learning to co-
ordinate video codec with transport protocol for mobile
video telephony. In The 25th Annual International Con-
ference on Mobile Computing and Networking, pages
1–16, 2019.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 485

https://www.apple.com/siri/
https://github.com/Unity-Technologies/UnityRenderStreaming
https://github.com/Unity-Technologies/UnityRenderStreaming
http://shop.sysmocom.de/products/sysmousim-sjs1
http://shop.sysmocom.de/products/sysmousim-sjs1
https://www.uber.com/
https://www.waze.com/

APPENDIX

A Notations

Notation Explanation
Tdrx_doze The DRX Doze latency for an uplink

packet between it enters buffer during
DRX OFF and DRX enters ON state

Tdrx_doze_max The maximum doze latency Tdrx_doze
measured under a cell

Tsr_wait The latency of waiting for an uplink
scheduling request (SR)

Tsr_grant The time difference between an SR and
sending data using the requested grant

Tbsr_grant The time between the first segment of a
packet being sent and the last segment
being sent through grants via BSR

Tretx The latency of uplink packet retransmis-
sion

Tscheduling Tscheduling = Tsr_wait +Tsr_grant
Tinactivity_timer A new data transmission will restart this

timer and keep the device in DRX ON
state until this timer expires

Tsr_periodicity The periodicity of subframes where a
device can initiate an SR

Tinterval The time interval between the last and
the next expected packet

Table 9: Notation table.

B Discussion on the Corner Case

The corner case happens when the grant from an SR is suffi-
cient for the data packet, but insufficient for the data packet
and its prefetcher. In this section, we discuss the size of the
grant from an SR and the probability of this corner case.

Since the size of a data packet and a prefetcher is fixed, the
occurrence of the corner case depends on the grant from an
SR. The BS assigns a grant for the SR according to 3GPP stan-
dard [1]. However, it has the freedom to determine the size of
the grant. It can assign certain RBs to the user. The number
of the RBs is denoted as NPRB. The RB amount is not suffi-
cient to determine the grant size, which is also affected by the
modulation index, denoted as IMCS. A BS sends a grant with
IMCS, which is affected by channel condition, device power,
etc. NPRB can be selected from a subset of discrete values
from {1, ...,110}, depending on the channel bandwidth. IMCS
can be selected from a subset of discrete values {0,, 63},
depending on the modulation capability of the device. Mul-
tiple IMCS can map to the same modulation scheme. The UL
data that can be sent using this grant is a function of both NPRB
and IMCS. This discrete function, denoted as F(NPRB, IMCS),
is shown in a 110x44 table in 3GPP 36.213 [1].

F() is monotonically increasing with either NPRB or IMCS.
Suppose the selection of NPRB and IMCS are independent. Let

the probability of the BS selecting P(NPRB = j) = p j, where
j ∈ {1, ...,110} and ∑ p j = 1. Similarly, let P(IMCS = i) = qi,
where i ∈ {0, ...,63} and ∑qi = 1. Let the size of the data
packet be a and the size of a prefetcher be a′. (j, i)∈ X1 if a≤
F(j, i) < a+ a′. Otherwise, (j, i) ∈ X2 Therefore, pcorner =

∑(j,i)∈X1 p j ·qi.
From the operational traces, a BS tends to assign NPRB =

2 or 3 in response to an SR. When NPRB = 2, any IMCS≥ 3 can
guarantee F(NPRB, IMCS)> 100. When NPRB = 3, any IMCS ≥
2 can guarantee F(NPRB, IMCS) > 100. In our experiments,
>99% of initial grants exceed 100B in all operators. This is
sufficient for a small uplink sensory data packet and a small
prefetcher message.

C Proof for Theorem 5.1

Proof. LRP operates based on the value of Tinterval . When
Tinterval ≥ Tinactivity_timer, LRP sends a rouser to eliminate DRX
doze latency. When the next packet arrives later than expected
(T > Tinterval), LRP is still very likely to reduce DRX doze
latency as the rouser sent Tdrx_doze before the next packet
will keep the device in ON state for Tinactivity_timer. There-
fore, as long as T ≤ Tinterval−Tdrx_doze +Tinactivity_timer, LRP
still reduces DRX doze latency. If T > Tinterval−Tdrx_doze +
Tinactivity_timer, the device might have already turned to DRX
OFF when the next packet arrives. In this situation, the
DRX doze latency still exists but LRP does not add extra
latency source. Similarly, when the next packet arrives early
(T < Tinterval), LRP still reduces doze latency when the rouser
precedes the data packet, namely T ≥ Tinterval−Tdrx_doze. LRP
cannot eliminate the entire DRX doze latency as the optimal
solution, but can still reduce doze latency to T − (Tinterval−
Tdrx_doze). Otherwise, LRP does not send any rouser and the
latency is the same compared to no LRP. In summary, if the
next packet actually arrives in T where Tinterval−Tdrx_doze ≤
T ≤ Tinterval −Tdrx_doze +Tinactivity_timer, LRP still eliminates
or reduces the DRX doze latency. The margin allowed for
error (Tdrx_doze and Tinactivity_timer−Tdrx_doze) can be 30-80ms
in reality depending on common LTE parameters. Otherwise,
LRP does not increase the latency.

When Tinterval < Tinactivity_timer, LRP sends a prefetcher only
(Tsr_grant before the next packet) to reduce scheduling latency.
If data arrives later, the prefetcher is still possible to save
its latency if its requested grant can be used by the next
packet, which is T < Tinterval +Tsr_wait . Similarly, if data ar-
rives earlier, the prefetcher reduces scheduling latency if it is
sent before the real data packet, i.e., T > Tinterval−Tsr_grant .
When the next scheduled packet arrives in Tinterval where
Tinterval−Tsr_grant < T < Tinterval +Tsr_wait , LRP still reduces
the LTE uplink scheduling latency. This margin allowed for er-
ror (Tsr_grant and Tsr_wait) is usually 8-20ms in reality depend-
ing on LTE parameters. Otherwise, the scheduling latency is
not reduced but LRP does not incur extra latency.

486 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Latency-Sensitive Mobile Apps over LTE
	Demystifying LTE Latency in Mobile Apps
	Measuring LTE Latency
	Why Long Latency: Breakdown Analysis
	DRX Doze Latency.
	Scheduling Latency.
	Other Latency Elements.

	LRP Overview
	The LRP Design
	Energy-Efficient DRX Doze Elimination
	Resource-Efficient Proactive Scheduling
	Handling the Conflicts for Low Latency
	Conflict Resolution Between Latency Elements
	Conflict Avoidance Between Dummy and Data

	Rootless Inference of Critical Parameters
	Miscellaneous Issues

	Implementation
	Evaluation
	Overall Benefits for the Applications
	Micro-Benchmarks
	Overhead

	Related Work
	Conclusion
	Notations
	Discussion on the Corner Case
	Proof for Theorem 5.1

