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ABSTRACT
Failures in 5G mobile networks are becoming the norm with the

ongoing global rollout. If left unattended, they affect mobile user ex-

periences and the proper functioning of applications. In this work,

we describe SEED, which offers a novel SIM-based solution to 5G fail-

ure diagnosis and handling. SEED infers failure causes by exploiting
current standardized 5G error codes and decision-tree/online learn-

ing algorithms. It further takes corresponding multi-tier reset/redo

actions (reset protocol operations, refresh outdated configurations,

reload profiles, etc.) once the failure cause is inferred. SEED takes
the operator’s perspective in its design for fast deployment. SEED
design works within the 5G standard framework and does not re-

quire changes on the device firmware or infrastructure hardware.

Our evaluation has confirmed the viability of SEED.
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1 INTRODUCTION
Failures in the 5G mobile network have become the norm, rather

than exceptions. As the system scale grows bigger and small cells

are deployed, users and their smartphone applications perceive

failures on a regular basis. In this work, we study the diagnosis and

treatment of network failures on both control and data planes in

the 5G protocol stack. As a showcase study, our analysis on public

5G traces reveals that, 2832 failure cases are uncovered from 24k

control/data-plane management procedures. Other prior studies

[35] also confirmed the prevalence of failures in 5G. If left unat-

tended, such failures may incur long disruptions for 5G-based Inter-

net access and impede the proper functioning of 5G applications.

Existing solutions to 5G failures take themodem-based scheme [3]

or the OS-centric approach [12] at the device. They use the timeout-

based detection with multiple timers, and take the sequential retry
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(i.e., level-by-level from transport, to 5G protocols, to radio module)

approach to failure recovery. Consequently, such detection and

reaction schemes are ill-suited for the complex 5G failure cases and

result in prolonged service disruptions ranging from tens of seconds

to tens of minutes. The fundamental problem is that, 5G failures

are highly diversified; they arise in the wide spectrum of control-

and data-plane managements, and data packet delivery. Without

cooperation from the infrastructure and the device to facilitate fine-

grained diagnosis, neither approach learns the error causes, but

takes the blind, sequential retry scheme to failure management.

In this work, we present SEED, a novel solution to 5G failure

diagnosis and treatment. SEED offers the SIM-based, pure software

solution. It provides fine-grained failure detection and recovery at

runtime by leveraging information from both the device and the 5G

network. It exploits the currently available SIM-network communi-

cation channel, which is conventionally used for mutual authen-

tication and add-on services [51], for a novel usage: collaborative

failure diagnosis. SEED thus leverages the 5G standardized messages

to infer failure causes, and devises domain-specific decision-tree

and online learning algorithms to enhance failure cause inference.

It further uses multi-tiered reset/redo (e.g., reset protocol message

operations, refresh the outdated configurations, reload the profiles)

for differentiated failure treatments. In contrast to complex failure

recovery mechanisms (e.g., rollover, logging and checkpointing,

state consistency management), SEED uses simple, yet effective re-

sets to handle all three categories of control-plane, data-plane, and

data delivery failures. Moreover, SEED leverages the existing sig-

naling messages defined by the 5G standards to enable real-time

failure diagnosis and handling. Consequently, the signaling with

diagnosis information could still be transmitted even when the data

session is not established or broken upon failures. Our empirical

evaluations over the testbed have confirmed that, SEED can reduce

the disruption time from 12.4∼476.0s by the current modem/OS-

based schemes to 0.4∼8.0s, a factor 0.6×∼792× of reduction. The

incurred extra battery usage at the device is about 1.2%.

The design of SEED takes the mobile operator’s view, who we

believe is in the best position for fast deployment and paced in sync

with the ongoing 5G global rollout. The design modules of SEED
running at the SIM applet, as well as added operations at the carrier

app, can be readily installed when a subscriber activates her/his

5G smartphone; this is already the common practice today. SEED
offers two modes with and without root privilege. The SIM and

carrier app updates can leverage the current practice via the OTA

channel for software upgrade. The infrastructure-side design of

SEED is also divided into phases for ease of incremental deployment.

Operators could deploy SEED with software updates at their core

network to enable diagnosis messages and perform online learning.

Furthermore, SEED does not pose new security threats. Everything is

under the operator’s control. Normal users cannot access/modify its

operations. Finally, SEED works within the 5G framework and does
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Figure 1: 5G device/infrastructure components
not require changing the current device firmware or infrastructure

hardware. It is also applicable to 4G LTE.

2 BACKGROUND
5G cellular network primer In 5G, mobile devices rely on

two key modules to access the network, the SIM/eSIM
1
and the

modem. The SIM stores critical subscriber information, including

user identities, configurations, and security keys, etc. The modem

loads the needed information from the SIM to register the device to

the network. To this end, the SIM runs its various programs (called

applets) to handle profile transmissions and authentication.

For data transfer, the mobile device proceeds with three stages

as shown in Figure 1. First, the modem sets up the control plane

via 5G signaling messages, including identity exchange, mutual

authentication between the SIM and the network, location update,

etc. Second, the modem and the infrastructure exchange signaling

messages for the data-plane setup
2
. This step completes data-plane

configurations including device IP address, and DNS server, etc.

Finally, the device starts data packet delivery for its applications.

Cellular network failures Failures have become the norm

rather than an exception in real-world 5G usage. Recent studies

show that, 30% of 5G devices experience failures during an 8-month

measurement [35]. Various failures are also reported by users each

day [21, 22]. From the technology perspective, 5G is using small

cells in the mmWave bands with smaller single-cell coverage, thus

triggering more frequent handovers [62]. Therefore, 5G may incur

more failure events with the increased frequency to sync up the

control-plane state, security update, and data sessions.

Failures in 5G are consequently becoming diversified. In gen-

eral, three types of failures arise at different stages of data transfer.

Control-plane management failures arise during the control signal-

ing operations, including setup, tracking area update, or teardown

procedures. Data-plane management failures affect the data session

setup, modification, or release procedures. Data delivery failures

incur packet delivery stall with established data-plane sessions due

to various causes (e.g., DNS errors, port blocking, etc).

These failures happen at both device and network sides. The

device may use outdated configurations, resulting in connectivity

failure [56]. The network could suffer from congestion, thus unable

to respond to requests in time [67]. Every component (hardware,

cellular stack, OS, etc.) could be the source of failure [35], given

the diversity and complexity of devices and infrastructure in both

hardware and software.

Cellular failure diagnosis & handling In principle, failures

need to be diagnosed with their root causes and handled with

differentiated actions. Given the limited capability to control the

1
In this paper, we use SIM to denote both SIM and eSIM for a slight abuse of notation.

2
This is called bearer setup in 5G standards [1].

device behavior from the infrastructure, current failure diagnosis

and handling are usually performed on the device side. There are

two popular approaches at the modem and the OS, respectively.

The modem implements the 5G-specific protocol stack in the

firmware. It thus handles control/data-planemanagement failures [3].

It identifies the failed procedures based on standardized protocol

messages and their finite state machines, and decides whether to

abort the connection or trigger retransmissions. For example, if

the modem fails to receive any response from the network for Reg-

istration Request, it will wait for T3511 (10s by default) and then

retry. After five such attempts, the modem waits for the longer

timer T3502 (12mins by default) and proceeds to retry. The timeout

varies for different procedures.

In the OS-based solution, OS implements more detection and

reaction mechanisms. The popular Android uses new mechanisms

of “timeout based probe and restart” for data delivery failures [12].

It monitors the network statistics, and periodically sends DNS and

HTTPS requests for failure detection. Android failure detection can

be categorized into three classes: connection issue to a preset URL
3
,

TCP failure
4
, and consecutive DNS timeouts

5
. Android first queries

the current connection list from the modem, and handles all such

failures with the same progressive approach of “sequential retry”:

clean up and restart all current TCP connections, re-register to the

network, and restart the modem. Android sets a three-minute timer

between each action if the previous action did not recover the data

connection successfully.

3 LIMITATIONS OF CURRENT SOLUTIONS
Despite the current solutions at the device, 5G users still regularly

perceive data service related failures, even with a strong radio sig-

nal bar at the smartphone [43]. We thus seek to first understand

how failures exhibit in practice given the deployed failure mecha-

nisms through a trace analysis. We then assess the existing modem

and Android failure handling. Our results show that both solutions

only perform coarse-grained diagnoses and cannot handle diversi-

fied failures well. Existing modem schemes incur repeated failures

and long disruptions, and Android suffers from prolonged failure

detection and false positives.

3.1 Failures in the Real World
In this work, we focus on failures related to the 5G protocol stack.

The network failures induced by other components, such as inter-

net outages, erroneous application implementations, or OS firewall

settings (e.g., user-determined network restrictions for apps), are

out of scope. We first analyze control/data-plane management fail-

ures in 5G. The 5G standard provides failure causes to indicate

failure reasons for control/data-plane management [3], which in-

herit from LTE with 5G context. We perform our trace analysis on

the publicly available, 6.7TB 5G/4G datasets collected from 2015-

Q3 to 2021-Q4. These public datasets include 4.7 million signaling

messages collected by 30+ device models using open-source tools

of MobileInsight [36] and MI-LAB [42]. The traces contain 8 mobile

carriers from the US and China. We found 2832 failure cases from

3
Android captive portal domain: connectivitycheck.gstatic.com0.

4
TCP failure rate exceeds 80%, or over ten outbound packets but no inbound packets

during the last minute.

5
Five consecutive DNS timeouts within 30 minutes.
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Class Failure Causes

Control

Plane

(56.2%)

UE identity cannot be derived by the network (15.2%)

No Suitable Cells In tracking area (12.6%)

PLMN not allowed (10.3%)

No EPS bearer context activated (7.5%)

Message type not compatible with the protocol state (2.8%)

Data

Plane

(43.8%)

Requested service option not subscribed (7.9%)

Invalid mandatory information (5.9%)

User authentication failed (4.7%)

Request rejected, unspecified (2.6%)

Insufficient resources (1.9%)

Table 1: Top 5 failure causes in control/data plane

24k control/data-plane management procedures; this gives a non-

trivial, over 10% failure ratio per control/data-plane management

lifespan. Table 1 shows the top 5 failure causes in the control and

data plane management. We elaborate on them next.

For control plane management, 3 out of 5 most frequent failures

are due to infrastructure-device status synchronization. The infras-

tructure fails to derive the updated device identity (15.2%), releases

previous data bearer context (7.5%), or sends mismatched signaling

(2.8%). One common reason for the unsynchronized status is that,

when the device moves to a new tracking area after handover, the

infrastructure fails to sync up states with the previous tracking

area. With state mismatch, the device suffers from long disruptions

during reattaching with outdated identities and contexts.

For data plane management, the top 2 failures are due to con-

figurations (requested service option not subscribed, and invalid

mandatory information). Although the configurations could be

proactively checked from the network side, the operational failures

cannot be completely eliminated in practice. The configurations

could be outdated on the device and result in data plane failure.

When such failures happen, the infrastructure only provides failure

causes without the correct, up-to-date configurations. The device

thus fails to recover, and repeated failures arise. In addition to those

failures from outdated configurations, diverse failures are exhibited,

including security check (user authentication failed), insufficient

resources, etc. Failures caused by expired subscriptions can only

be recovered with user actions such as reactivating the data plan.

Reject messages may also include unspecified causes that are seen

at the infrastructure or devices.

During data delivery, the three most common failures incur data

stall in 5G cellular networks: TCP, UDP, and DNS [35, 48, 62]. The

TCP anomaly is observed in operational 5G networks [48]. The UDP

port blocking is also widely reported by users under 5G deployment

[54]. For DNS failures, public DNS services such as Google DNS typ-

ically do not apply to cellular networks. Carriers usually configure

users’ DNS with their local DNS resolvers (LDNS), which is less sta-

ble due to user mobility and congestion [50]. Although operators’

DNS servers may work correctly during the device registration,

they may experience outages thereafter. Neither Android nor iOS

provides default DNS configuration for backup, which makes de-

vices difficult to recover from carrier DNS failures [7]. Users have

reported DNS failure instances among operators [15, 53].

3.2 Limitations of Modem Scheme
The current modem-based solution handles both control- and data-

plane management failures. However, it does not perform fine-

grained diagnosis or take precise actions for different failures. Note

that it could have obtained the standardized failure causes from the
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Figure 2: Disruption time with existing modem handling for
control and data plane management failures

signaling messages, but did not leverage them for fine-grained diag-

nosis. The modem either aborts the connection and retracts to idle,

or triggers retransmission upon timeout. Our analysis shows that,

the modem might keep on resending the signaling message with

outdated status, which causes repeated control-plane management

failures until the modem reboots. When outdated configurations

further trigger data plane management failures, the modem cannot

update them. Repeated failures are observed thereafter.

Empirical Validation We measure the disruption time with the

existing modem handling scheme using traces in §3.1. As shown
in Figure 2, 50% of control-plane setup failures cause more than

12.4s of disruptions. Only 19% of failures could be recovered within

2s. The modem tries to reattach when various timers are triggered

after 10s. However, the timeout prolongs the disruption, and only

27% of failures are recovered within 10s. Repeated failures happen

when the modem retries with previous data-plane configurations.

For example, when the access point name (APN) is outdated, 5G

data plane setup fails. The modem activates reattachment, but still

uses the previous APN during the data-plane setup, making the

device fail for the same reason repeatedly. The frequent, repeated

failures prolong the disruption. Only 9% of data plane management

failures could be recovered within 10s. Half of the failures need

about 8 minutes to be recovered.

With limited information from the network side, currentmodems

cannot ensure fine-grained failure diagnosis and recovery. Further-

more, modem-based solutionsmay suffer from three problemswhen

collaborating with the network: First, multiple parties (operators,

modem vendors, etc.) need to follow the same protocol for collab-

orations, requiring a long time to be standardized and deployed;

Second, operators may not want to leak their network-side informa-

tion to third parties (e.g., modem vendors); Third, the security for

modem-network collaboration requires extra infrastructure support

(e.g., public key infrastructure) and increases deployment cost.

3.3 Android: Insufficient Diag & Handling
Android further monitors failures of the data delivery stage. How-

ever, it suffers from limited detection schemes and long detection

latency. First, Android does not check for those failures related to

UDP, which is widely used in WebRTC, QUIC, etc., for 5G IoT and

real-time applications. Second, Android provides a timer-based fail-

ure detection without distinguishing application requirements, thus

resulting in prolonged disruption for all applications. For example,

while video streaming apps could tolerate seconds of disruptions

with a large buffer, 5G AR/VR apps fail to function properly with

100ms disruption [38].
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Solutions Failure Detection Failure Recovery (No-user-action Required) Failure Recovery
& Diagnosis? Config-related Non-config-related (User-action Required)

Modem-based Only device-side Not support Timer-based retry Not support

OS-based Only device-side Not support Layer-by-layer retry Not support

App-based Only device-side Not support Transport reconnection Not support

Infra-based Only infra-side Infra-side config updates Waiting for device retry User Notification

SEED Both infra & device-side Both-side config updates Multi-tier reset User Notification

Table 2: Comparison of different solutions for 5G failure diagnosis and handling

0 100 200 300 400 500 600 700 800
Failure Detection Time(s)

DNS

UDP

TCP

Figure 3: Android failure detection latency
Android takes the sequential retry approach upon detecting fail-

ures via timeout. Retry is an effective solution that is also suggested

by operators [16, 55]. However, This level-by-level retry actions by

Android yield long time intervals between two actions. While the

OS-based solution could effectively check the device-side firewall,

user-determined app data restrictions, etc., the limited device-side

information cannot make it elude those failures from the cellular

network. Without fine-grained failure diagnosis, sequential retry

incurs prolonged application disruption or even no recovery. For

example, if the TCP failure is caused by underlying control/data

plane failures, refreshing TCP connections cannot help.

Empirical Validation We assess Android detection for TCP,

UDP, and DNS failures on the latest Android 12. We connect the de-

vice with Magma cellular testbed [39]. After the device successfully

acquires the data service, we block TCP, UDP, and DNS queries,

respectively, at the core network. During experiments, we play

the same background Youtube video and visit websites from the

browser every 5 seconds to simulate daily usage scenarios. We

measure the failure detection latency from the time when failure

happens to the instant Android reports data stall.

Figure 3 plots the latency distribution for different failure detec-

tions. For TCP failures, Android takes 1.8 minutes on average to

report data stall. We note DNS and UDP failures are not well dealt

with in Android. Results show that 50% of DNS failures cannot

be detected within 8.7 minutes. For UDP failures, Android could

only detect it if the failure leads to consecutive DNS timeouts; it

takes 8 minutes on average. Otherwise, UDP failures could not be

detected. Furthermore, we test Android when connections to the

preset URL are blocked; this simulates failures due to server issues.

Android still reports data stall alerts, which causes false positives. It

further triggers recovery actions and disrupts existing connections.

The interval between level-by-level reset actions is 3.5 minutes on

average, which results in long disruptions.

In summary, both schemes take the device-based approach and

suffer from several downsides. First, the restricted device-side in-

formation limits the fine-grained failure diagnosis and recovery

schemes. Both modem and OS based solutions incur prolonged

disruptions upon failures with their timeout-based detection. Sec-

ond, neither exploits available error causes carried by 5G messages.

Specifically, the modem could leverage the embedded failure causes

carried by the reject signaling messages for diagnosis. However,

it did not. Android maps part of standardized failure causes with

DataFailCause [13], but did not use them in failure diagnosis and

recovery. Third, failure handling is simplistic. The sequential retry

(i.e., level-by-level recovery) leads to long disruptions. The naïve

retry by modem does not infer the causes, thus unable to fix fail-

ures due to outdated configurations. Simple retry further aggravates

congestion upon failures of cell/core overload.

3.4 Solution Space
In addition to the modem-based and OS-based solutions, there ex-

ist some application-based proposals. MobileInsight [36] provides

an in-device failure detection through continuous monitoring of

the diag port messages. Commercial tools such as NetMotion [44]

leverage a mobile application to report high-level metrics (e.g.,

device types, network performance, etc.) to pre-deployed servers

for failure analysis. Although the application could detect failures,

the recovery is limited. Applications without root can only take

the transport-layer reconnection action, which cannot recover cel-

lular stack failures. Even if the app owns root access, similar to

modem/OS-based solutions, simple retries can only recover fail-

ures from temporary infrastructure-device status unsynchroniza-

tion, but not failures caused by outdated configurations. Moreover,

for failures that require user actions to recover (e.g., expired data

plan subscription, identity authentication failures, etc.), the device

cannot obtain enough hints about failures to take proper actions.

Furthermore, existing SIM add-on services (e.g., [51]) could only

monitor the SIM hardware health (say, read/write cycles), cell signal

strengths, etc., but cannot diagnose complex protocol failures. In

conclusion, the device-side solutions cannot acquire the network-

side information for fine-grained failure diagnosis and handling.

While the device-side approach has limitations, the second so-

lution option is an infrastructure-based scheme. This choice also

has several limitations in both failure detection and reaction. First,

the infrastructure may not have access to higher-layer information

(e.g., transport and app layers), thus unable to infer high-layer fail-

ures accurately. Second, monitoring data traffic over high-speed 5G

may incur significant processing overhead. Third, the infrastruc-

ture cannot differentiate which case happens in the absence of data

traffic: whether misconfiguration blocks the device’s traffic, or the

device is idle without data to transfer.While the infra-based solution

could send failure notifications through other channels (e.g., email),

it lacks device control for failure reactions. Although the infras-

tructure could acquire standardized causes for control/data-plane

management failures, or even pinpoint the root cause (outdated

configurations, customized policies, etc.), it can only update infra-

side configurations for failure recovery but cannot notify devices

at runtime with corresponding action commands (e.g., update SIM

configurations). We summarize the existing solutions to 5G failure

diagnosis and handling in Table 2.

The third option is to let the device and the infrastructure col-

laborate in failure diagnosis and reactions. The device can detect

high-layer failures reliably and take direct low-level reset actions
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Figure 4: SEED diagram
via modem. The infrastructure can directly correct misconfigura-

tions and use crowdsourcing among devices to infer failure causes.

However, a naive approach in this option also suffers from three lim-

itations. First, the device and infrastructure might not communicate

failure-related messages upon failures. Second, exposing failures

may compromise system security. Third, the solution may not work

within the 5G framework.

4 SEED: SIM-BASED FAILURE DIAGNOSIS
4.1 Case for SIM-based Solution
Wemake a case for a SIM-based solution that addresses all the above

limitations. First, the SIM and the network can communicate via sig-

naling messages over signaling channels, rather than data packets.

The channel subsists even when the data session is not established

or broken. Second, SIM is produced by operators and trusted by

the in-network devices. In-SIM keys could further protect the SIM-

network communication without extra certificates. Therefore, SIM

bridges the network and devices as a trusted agent. Adversaries

cannot access the SIM info without the in-SIM keys. Third, SIM

is applicable to nearly all cellular-connected devices. New func-

tions could be deployed in the form of a SIM applet. They can

be upgraded with the over-the-air (OTA) mechanisms on existing

SIM/eSIM. Last, the SIM-based scheme offers a purely software-

based solution without changing 5G standards, device firmware, or

infrastructure hardware.

4.2 SEED Overview
We thus design SEED, a SIM-based solution to 5G failure diagnosis

and handling. SEED offers a software-based scheme deployable by

5G mobile carriers. It offers lightweight, fine-grained failure de-

tection and recovery at runtime with SIM’s constrained hardware

capability. SEED leverages 5G standardized messages to infer fail-

ure causes inside the SIM. It further uses multi-tiered resets/redos

for differentiated failure handling. In contrast to complex failure

recovery (e.g., rollover, logging and checkpointing, recovery from

crashes), SEED uses simple, yet effective resets to handle all three

types of control-plane, data-plane, and data delivery failures.

Figure 4 shows the overall system diagram of SEED. First, SIM
receives failure reports from applications (1a) and the network (1b).

Failure reports include failure clues such as network-side diagnosis,

instructions with updated configurations, and device-side failure

details (no connection, DNS/UDP failure, etc.). With such clues,

SIM performs local diagnosis, makes handling decisions, and trig-

gers recovery actions at the device (2a) or the network (2b). SEED
addresses three issues in its SIM-based design:

• How does SIM pinpoint failures at low overhead? We

ensure the solution is viable on resource-constrained SIM hardware.

To this end, SEED combines standardized failure causes with the up-

to-date configurations from the infrastructure, as well as OS/App

failure reports from the device. SEED further performs fine-grained

failure diagnosis with limited SIM processing and storage.

•How does SIM handle diverse failures that arise at different
stages? We develop simple and fast failure recovery via multi-tier

reset. SIM could perform profile reloads, configuration updates and

failure notifications on commercial off-the-shelf devices without

root access. It further supports faster control/data plane resets with

root privilege.

•How does SIM collaborate with the infrastructure when the
data plane is broken? The SIM obtains information from the

infrastructure for fine-grained diagnosis and handling. We leverage

existing signaling messages to transmit diagnosis information, thus

ensuring runtime SIM-network information exchange upon failures

of control/data-plane management or data delivery.

4.3 Lightweight SIM Diagnosis
We now introduce how the SIM performs fine-grained failure diag-

nosis with both-side information. For control-plane and data-plane

management failures, the SIM receives the standardized 5G failure

causes from the infrastructure, and leverages them for diagnosis.

The SIM further enables apps to report data delivery failures for

fast detection and diagnosis.

4.3.1 Failures in control/data-plane management. The 5G standard-

ized failure causes provide a good source for SIM diagnosis. 5G

defines 80+ failure codes, which are embedded in signaling mes-

sages. Most of the messages containing failure codes are the “reject”

messages from the network or the device, such as Authentication

Reject, PDU Session Modification Reject, etc. The messages that em-

bed standardized causes have been widely deployed in practice [19].

SEED achieves lightweight and fine-grained SIM diagnosis with

such standardized causes. When the infrastructure composes the

reject or receives device reject messages, it extracts the embedded

standardized cause and sends the cause code to the SIM (more de-

tails in §4.5). The SIM applet stores all standardized cause codes

and looks up the received cause to quickly detect and pinpoint the

failure. Although the SIM’s storage is limited (32∼128KB), it is suf-
ficient to hold all cause codes for in-SIM analysis. The causes could

be categorized into control-plane management and data-plane man-

agement. Control-plane management causes include failures related

to UE identification, subscription options, network congestion, au-

thentication, invalid messages, etc. Data-plane management causes

include configuration failures and protocol errors. Standardized

causes are already supported at the infrastructure and do not need

extra modules or algorithms, thus resulting in marginal overhead.

SEED further exploits SIM capability to prevent repeated failures.

If the failure cause is related to outdated configurations, simple

retries cannot succeed but result in repeated failures. Therefore,

when the infrastructure initializes the reject due to outdated device

configurations, it sends the up-to-date configuration together with

the cause code to the SIM. We list the failure causes related to

outdated configurations in Appendix A. Upon receiving these cause

codes, the SIM parses the configurations based on the cause code

and stores them for next-step handling (§4.4).
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Figure 5: Multi-tier reset w/ and w/o root privilege
4.3.2 Failures in data delivery. For packet delivery failures, current

user applications cannot diagnose them with limited low-layer

information from the mobile OS. Emerging 5G applications are

disruption-sensitive and require quick recovery. SEED thus enables

these applications to report failures for fast diagnosis. Applications

could call the failure report API if they need fast failure handling.

The API carries three parameters (failure type, traffic direction,

address). The failure types support the three most common failures

discussed in §3.1: DNS, TCP, and UDP. The application indicates

the failed traffic direction, including uplink, downlink, or both. The

address contains the IP and port for TCP/UDP failures. These fields

are used by the 5G Traffic Flow Template (TFT) to regulate the

traffic and activate IP/port blocking with incorrect configurations.

The domain names are embedded in the address field for DNS

failures. The report enables disruption-sensitive apps to bypass

long Android detection and speed up the diagnosis. SIM further

leverages existing APIs to acquire the Android data stall notification.

Whenever receiving the App/OS failure reports, SIM leverages the

reported information for fast failure handling in §4.4. Note that SEED
does not explicitly diagnose and handle instantaneous, underlying

radio link failures. However, such physical-layer issues may affect

control/data-plane management and data delivery, which will be

observed at higher layers and handled by SEED.

4.4 SIM-Based Failure Handling
With the diagnosis result, we address the next issue of reacting to

diverse failures that arise at different stages. Different from the blind

retry by the modem and Android, SEED handles diverse failures

via the multi-tier reset mechanism directly, facilitated by both-side

information to pinpoint the failure, thus leading to fast failure

recovery. We first list the multi-tier reset actions taken by the SIM.

We then elaborate on how the SIM decides which action to take

accordingly.

4.4.1 Handling with Multi-tier Reset. SEED leverages the SIM to ini-

tiate multi-tier reset actions. This is nontrivial, since the SIM does

not directly control those cellular connections. SEED explores the
limited interfaces supported by current 5G devices, and designates

two modes with different device privileges. Without root privi-

lege, SEED-U uses the multi-tier reset to reload the failed module

directly. When root privilege is available, SEED-R further improves

the recovery speed.

Multi-tier reset without root access SEED-U takes multi-tier

reset actions for failure handling at three levels as shown in Fig-

ure 5(A). At the hardware level, reset enforces the modem to clear

its cached contexts, preventing it from being stuck in prolonged

attempts with invalid caches. The SIM triggers profile reloading at

the modem to sync its SIM profiles (A1). Different from the naive

Modem gNB AMFSIM

Recv	Data	Failure	Report
FailureInfo(ATCmd) 1.	Setup	DIAG	Session

PDU	Session	Establishment	Procedure	(DATA)

2.	Release	DATA	Session
3.	Setup	DATA	Session
4.	Release	DIAG	Session

Figure 6: Reset data plane without reattachment
retry scheme in the current modem/OS, the SIM also retrieves the

latest configurations from the infrastructure to handle outdated

configurations. The SIM updates the control-plane configurations

(A2) (e.g., PLMN list) to reduce excessive search time. The mis-

matched control-plane states/identities (shown in Table 1) are also

refreshed in the reset. SEED-U leverages the proactive commands

between the SIM and the modem to realize these two actions [23].

The proactive command is usually used to provide carrier services

such as OTA updates, which has been supported by current smart-

phones without root privilege. To our knowledge, SEED-U is the

first to leverage it for failure handling. SEED-U could further update
the acquired data-plane configurations from the SIM (A3), such as

DNNs or APNs, leveraging the Android carrier app [14]. All such

actions do not require root privilege at smartphones.

Boost multi-tier reset with root privilege With root privi-

lege, SEED-R further improves granularity and speed for diagnosis.

5G/4G devices provide AT commands [4] as another interface for

fine-grained modem control but require root privilege. When the

carrier app detects that root access is permitted, it will notify the

SIM through APDU to enable the SEED-R mode. Figure 5(B) shows

the multi-tier reset with root privilege. Upon hardware failures, SIM

restarts the modem (B1). It recovers the modem from being stuck in

internal errors. For control-plane failures, SEED-R directly controls

the modem for control-plane reattach (B2), which improves the

recovery speed without prolonged search procedures.

SIM further collaborates with the infrastructure for data-plane

resets (B3). Resetting only the data session speeds up the handling.

However, 5G gNB releases the last radio bearer once the last data

session is released, thus causing the control-plane reattach. SEED
designs the fast data plane reset in Figure 6 without resetting the

control plane. Upon receiving failure reports about the initial data

session, the SIM triggers the modem to set up another data session

with DNN “DIAG”. The reattach will not happen when “DATA” ses-

sion is released as “DIAG” session and corresponding 5G gNB radio

bearer still exist. Finally, the device reconnects “DATA” session and

releases the “DIAG” session. The network could also modify the ex-

isting “DATA” bearer rather than reset it, if only configurations (e.g.,

TFT) need to be updated. All the session setup/release/modification

signalings are standardized in 5G [3]. SEED leverages them to handle

data delivery failures without disrupting the existing, established

data plane.

4.4.2 Deciding on Reset Actions. Resetting different modules re-

quire different latencies. To speed up failure handling, the SIM uses

the diagnosis results and the current mode to perform targeted

reset action without layer-by-layer retry.

Table 3 shows the SIM handling decisions without root (SEED-U)
and with root privilege (SEED-R). For control-plane management

failures not caused by outdated configurations, SEED-U reloads the

134



SEED: A SIM-Based Solution to 5G Failures SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Diagnosis Class Failure Handling w/o Root (SEED-U) Failure Handling w/ Root (SEED-R)
Control-plane Causes SIM Profile Reload (A1) Reset Modem (B1)

Control-plane Causes w/ Config Parameter Update & Profile Reload (A2 & A1) Control-Plane Reattachment with Update (B2)

Data-plane Causes SIM Profile Reload (A1) Data-plane Reset (B3)

Data-plane Causes w/ Config Configuration Update (A3) Data-plane Modification (B3)

Data Delivery Failures Reported by App/OS Configuration Update (A3) Data-plane Reset / Modification (B3)

Table 3: Failure handling decisions with diagnosis results

SIM profile to reattach (A1). With root privilege, SEED-R performs

modem reset using AT commands (B2). When outdated configura-

tions incur failures, SEED-U updates the control-plane parameters

and reloads SIM profiles for registration (A2 & A1). With root priv-

ilege, SEED-R updates the configurations and triggers reattach on

modem for fast handling (B2). As 20% of control-plane management

failures could be recovered within 2s (§3.2), SEED sets a 2s timer be-

fore triggering hardware and control plane reset. The short timeout

enables speedy recovery upon such failures.

When data-plane management failures arise, with SEED-U, the
SIM triggers the SIM profile reloading. The data plane will be reset

after the control-plane reattach. With root access, SEED-R triggers

data-plane reset for faster failure handling (B3). When the SIM

acquires data-plane configurations (DNN, PDN type, etc.) from the

infrastructure, the SIM further triggers configuration updates (A3)

with SEED-U or data-plane modification (B3) with SEED-R.
SIM may receive applications/OS reports for data delivery fail-

ures. If it received causes on control/data-plane management fail-

ures within the last 5s, there could be an ongoing handling. The

SIM does not trigger handling to avoid conflict. Otherwise, the SIM

triggers the configuration updates in the carrier app (A3) to reset

data connection without root. SEED’s rate-limit design does not

perform the same reset action consecutively and frequently; the

signaling messages are thus not overwhelming. With root access,

the SIM sends the failure report collected from App/OS (§4.3.2) to
the infrastructure with real-time SIM-Infra collaboration (details in

§4.5). The infrastructure checks if the failure type, direction, and
address conflict with user policies, or if DNS failure happens. It

then modifies the data session with updated user polocies when

conflict arises for TCP/UDP, or configures a new DNS server in the

followup reset (B3).

4.5 Real-Time SIM-Network Collaboration
We next address the issue of enabling SIM-infra interaction when

the data plane is broken, without changing modem/gNB firmware

or modifying standardized messages. Note that SIM needs to ac-

quire the information of failure causes and updated configurations

from the infrastructure. SIM also notifies the infrastructure for

data-plane resets. Although SIM OTA provides a channel for SIM-

Infrastructure communication [51, 52], it relies on data service (e.g.,

TCP/UDP) and cannot work during connection setup. Moreover,

upon data delivery failures, packets may not be delivered and SIM

OTA is unavailable.

SEED leverages standard-compliant control-plane signaling mes-

sages. The infrastructure embeds the failure-related info in Authen-

tication Request signaling messages. SIM embeds failure diagnosis

results in PDU Session Establishment Request to trigger data-plane

resets. SEED design is compatible with 5G commodity devices with-

out modem or gNB firmware modifications. These messages are

available in the presence of failures. Hence, the infrastructure and

Modem gNB AMF
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Figure 7: Collaboration with standard-complied signaling
messages (a) Network to SIM (b) SIM to Network

the SIM could perform real-time interactions for failure diagnosis

and handling, even when the data bearer is not up or broken.

How Does Infrastructure Deliver Info to SIM? In SEED, the
network leverages the 5G Authentication Request message used for

mutual authentication to send diagnosis info. In this message, the

network generates a 16-byte RAND and a 16-byte AUTH, which

the modem will forward to the SIM for authentication [30]. SEED
reserves a RAND value (FF. . . FF) as the Diagnosis Flag (DFlag). As

shown in Figure 7(a), the 5G network embeds the diagnosis info in

the AUTH field and sets the RAND as DFlag. When the SIM sees

the reserved DFlag, it does not verify the key but parses the AUTH,

which is encrypted and integrity protected with a counter using the

pre-shared in-SIM key. SIM returns synchronization failure as the

ACK upon successfully receiving the diagnosis. If the sync failure is

not responded, the modemmay label the network as untrusted. The

network then resends a normal Authentication Request. The 16B

AUTH suffices to hold the cause code and most updated configura-

tions. The network could embed more information with multiple

transmission rounds. Note that, the network can send Auth Request

at any time with a NAS signaling connection [3]. Although the

control plane is not fully established (with successful completion

of both authentication and configurations), the network could still

transmit Auth Request to the SIM, thus enabling collaboration in

the presence of control/data-plane failures.

How Does SIM Transfer Info to Infrastructure? Data de-

livery failures may block packet transfer with data plane set up.

SEED embeds the failure report collected by SIM in the PDU Session

Establishment Request to report data delivery failures, as shown in

Figure 7(b). After control-plane setup, the device requests the data

bearer with a corresponding Data Network Name (DNN) in 5G [3].

Standards support sending DNNs for multiple data sessions, which

enables SEED to report failures anytime after control plane setup

with a new request. SEED leverages the undefined field to embed the

diagnosis information in the DNN field [2], which is also encrypted

and integrity protected using the in-SIM key. The 100B DNN size is

sufficient for the current report; our experiments further validate
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that, a longer report triggering multiple consecutive requests can

be fragmented into several DNNs. SEED triggers the modem to send

the request with a special diagnosis DNN starting with “DIAG”.

After the network gets the DNN and parses the report, it validates

the failure with current user settings, responds with a reject as ACK,

and modifies the current data session configs or follows Figure 6

for the reset.

The real-time SIM-Infrastructure collaboration is compatible

with 5G devices. The gNB/modem firmware remains unchanged.

Carriers could update the SIM via OTA for new applet logic. The

network-side functions could be extended with a new core module

handling diagnosis messages, which current cloud-based core net-

work implementations could quickly deploy [17, 39]. SEED only re-

quires a small amount of extra signaling messages for collaboration

with marginal overhead at the device and the network. Note that,

the real-time collaboration cannot work if the radio access is bro-

ken. The radio link issues and recoveries are well studied [6, 47, 49].

The real-time collaboration in SEED is designed to supply commu-

nication channels, in the presence of failures on control/data-plane

management and data delivery.

5 ENHANCED FAILURE MANAGEMENT
5.1 Insufficient Standardized Causes
Standardized causes provide a good source for failure diagnosis.

However, they are insufficient for devices in three aspects. First, they

cannot cover all control/data plane failures. Failures from operators’

customized policies, such as the supported device list [60], do not

fit into any standardized causes. Second, the data delivery failure

could happen due to gNB/core congestion. Without knowing it, the

reset may further increase the loads. Third, the failure’s root cause

could be unspecified without a recovery action. The coarse-grained

information is insufficient for failure recovery.

Therefore, the SIM needs more information for failure diagnosis.

Thus, we leverage the infrastructure assistance for SIM diagnosis

to cover diverse failures (§5.2). We further show how SEED auto-

matically handles failures with an unknown root cause (§5.3).
5.2 Infra-Assisted SIM Diagnosis
We first introduce infrastructure assistance for the diagnosis. This

component leverages the deployed metrics in the infrastructure,

which avoids redundant processing and is scalable for massive

devices. We then elaborate on how SIM diagnoses failures with

information from the infrastructure.

Infrastructure Assistance The infrastructure classifies failures

with a decision tree as shown in Figure 8. It then sends the corre-

sponding assistance information to the SIM with real-time collabo-

ration (§4.5). The assistance information includes four types: failure

causes, suggested configurations, suggested reset actions, and con-

gestion warnings. SEED acquires them from the existing monitoring

and management functions in current 5G infrastructure [31, 40] to

assist failure diagnosis without complex processing.

The infrastructure classifies the failures into two types: passive

and active. The passive type includes failures not initialized by the

infrastructure, such as device response timeout, device reject, or

SIM-reported data delivery failure. Standardized causes are sent

to the SIM as §4. For customized failures, it sends suggested reset

actions for SIM handling. It further notifies the SIM with cell/core

congestion. The active type includes network-initialized rejects.

In addition to standardized failures, the infrastructure provides

customized causes with suggested actions to cover failures from

customized policies. For causes without suggested actions, we pro-

pose an online learning algorithm to handle them (§5.3).
SIMDiagnosis SIM receives the four types of assistance info and

performs the following actions accordingly. The SIM applet stores

all supported failure causes and assistance info parsing functions.

They follow a similar decision tree scheme at the network side and

could be deployed with limited SIM processing and storage. SIM

handles standardized failures and refreshes configurations as in §4.4.
The SIM performs the suggested reset action for customized failures,

enabling operators to deploy handling for new failures. When the

SIM receives the congestion warning, it does not trigger the reset

but waits for a timer embedded in the message. SIM parses the

assistance information from the infrastructure, and handle diverse

standardized and customized failures accordingly with the multi-

tier reset. It further notifies users of failures requiring user actions

to recover (e.g., reactivating the data plan).

However, there are still failures causes without corresponding

handling. The infrastructure may map unstandardized causes to

policies or modules but do not have any clues for the device han-

dling. We further design an online learning algorithm to handle

failures without a known handling action. We elaborate on it next.

5.3 SIM Handling with Online Learning
While the root cause is unclear, previous devices’ successful han-

dling probably works for new devices facing the same failure. Al-

though failures may appear from different functions in one mod-

ule, the multi-tier action directly resets the whole module and has

similar effectiveness for various devices. SEED proposes an online

learning algorithm to crowdsource the handling history from SIMs,

and picks out suggested actions when the same failure happens in

the future. The infrastructure and SIMs keep evolving and automat-

ically train the model for failures with unknown handling.

Algorithm 1: Collaborative Online Learning
1 def SIM-RecvUnknownFailure(𝑐𝑎𝑢𝑠𝑒):
2 for 𝑎𝑐𝑡𝑖𝑜𝑛 ← [𝐵3, 𝐴3, 𝐵2, 𝐴2, 𝐵1, 𝐴1] do
3 if DoRecovery(𝑎𝑐𝑡𝑖𝑜𝑛) == success then
4 𝑆𝐼𝑀𝑅𝑒𝑐𝑜𝑟𝑑 [𝑐𝑎𝑢𝑠𝑒] [𝑎𝑐𝑡𝑖𝑜𝑛] ← +1
5 break

6 if SendToInfra(𝑆𝐼𝑀𝑅𝑒𝑐𝑜𝑟𝑑) == success then
7 𝑆𝐼𝑀𝑅𝑒𝑐𝑜𝑟𝑑 = 𝑑𝑖𝑐𝑡 [] []
8 def Infra-Crowdsource(𝑆𝐼𝑀𝑅𝑒𝑐𝑜𝑟𝑑):
9 for 𝑐𝑎𝑢𝑠𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛 ← 𝑆𝐼𝑀𝑅𝑒𝑐𝑜𝑟𝑑 do
10 𝑁𝑒𝑡𝑅𝑒𝑐𝑜𝑟𝑑 [𝑐𝑎𝑢𝑠𝑒] [𝑎𝑐𝑡𝑖𝑜𝑛] ←

+𝑆𝐼𝑀𝑅𝑒𝑐𝑜𝑟𝑑 [𝑐𝑎𝑢𝑠𝑒] [𝑎𝑐𝑡𝑖𝑜𝑛]
11 def Infra-SendUnknownFailure(𝑐𝑎𝑢𝑠𝑒):
12 if 𝑐𝑎𝑢𝑠𝑒 ∈ 𝑁𝑒𝑡𝑅𝑒𝑐𝑜𝑟𝑑 then
13 𝑠𝑔𝑠𝑡𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑁𝑒𝑡𝑅𝑒𝑐𝑜𝑟𝑑 [𝑐𝑎𝑢𝑠𝑒])
14 if 𝑟𝑎𝑛𝑑 () < 1

(1+𝑒−𝑙𝑟∗𝑠𝑖𝑧𝑒 (𝑁𝑒𝑡𝑅𝑒𝑐𝑜𝑟𝑑 [𝑐𝑎𝑢𝑠𝑒 ]) ) then
15 SendtoSIM(𝑐𝑎𝑢𝑠𝑒 , 𝑠𝑔𝑠𝑡𝐴𝑐𝑡𝑖𝑜𝑛)
16 return

17 SendtoSIM(𝑐𝑎𝑢𝑠𝑒 , 𝑛𝑢𝑙𝑙 )
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Figure 8: Low-overhead infrastructure assistance classifies failures and sends assistance information to the SIM

The online learning algorithm (Algorithm 1) includes the SIM

side (line 1-7) and infrastructure side (line 8-17). When the infras-

tructure does not know the handling action for a failure, it generates

a customized code to identify the failure, such as the conflicting

policies or modules. The cause code is sent to the SIM through SIM-

Network collaboration (§4.5). SIM tries all the supported retries

and resets sequentially from the data plane to the hardware (line

2). It records the successful handling that resolves the issue and

notifies the infrastructure with OTA (line 3-7). The infrastructure

crowdsources SIM records and updates the network-side record

(line 8-10). It then sends out suggested action for part of later de-

vices controlled by a learning rate 𝑙𝑟 . Otherwise, the infrastructure

does not suggest any actions, ensuring that the model is trained and

evolving (line 14). If the suggested handling failed, the SIM takes the

same action as receiving unknown failure and tries all the supported

actions sequentially. In our online learning procedure, the SIM only

stores customized error codes and corresponding actions. The data

volume is small enough to be held within the limited SIM storage.

With the collaboration between SIMs and the infrastructure, online

learning provides automatic failure handling for unknown causes.

The decision model also evolves gradually without heavy training,

which is lightweight and scalable for massive devices.

6 IMPLEMENTATIONS
Figure 9 shows the implementation of SEED. The operator owns
controls for all SEED components in practice, including the infras-

tructure module, SIM applet, and the carrier app.

Solution prototype We develop a SIM applet on Javacard-based

eSIM [66], which is compatible with most mobile OS (e.g., Android,

iOS, etc.). The applet contains 1244 lines of Java with two modules.

The diagnostic module receives the infrastructure assistance infor-

mation through the modem with APDU interface [23], and app/OS

failure report through the carrier app with TelephonyManager

API [10]. The decision module uses SEED-Umode by default for the

multi-tier reset. For SEED-Umode, the decision module sends proac-

tive commands through APDU to the modem for profile reloading

and control-plane configuration updates, and updates data-plane

configurations with the carrier app. SIM is notified by the carrier

app when root privilege is available. It then enables SEED-R mode

and sends AT commands listed in Appendix B to the carrier app

for faster failure handling.

We extend the Magma 5G NSA core [39] with a plugin to assist

SIM diagnosis with 1035 lines of C++. The diagnosis assistance

module hooks the reject generation functions to acquire the stan-

dardized failures. It acquires the latest configurations from the

orchestrator API [41] and extra information such as RAN/core load

from Magma NMS [40]. We extend the orchestrator API to receive

SIM recovery records and forward them to the assistancemodule for

online learning (§5.3). The real-time collaboration module reuses
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Failure	Report	Service

Recovery	Ac9on	Module

5G	Core	Plugin
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Figure 9: SEED implementation components
the Auth Request functions and hooks the PDU establishment han-

dling function. The information is encrypted with 128-EEA2 and

integrity protected with 128-EIA2 using the pre-shared in-SIM key

to prevent information leakage and malicious requests.

We develop a carrier app with Android UICC Privilege API [14]

to update carrier configurations, and receive data stall notifications,

etc. It contains twomodules with 842 lines of Java. The failure report

service receives app reports with Android Service [9] andOS reports

with Connectivity Diagnostics API [11]. For unrooted devices, the

recovery action module updates configurations with UICC Privilege

API. If it detects root privilege with Runtime API [8], it notifies the

SIM to enable SEED-R mode for it to trigger AT commands.

Deploying SEED in practice The operators have access to all

components that SEED involves, including the core, SIM, and the

carrier app. Therefore, SEED is a viable solution that can be deployed
by operators alone, without any help from modem or phone ven-

dors. Besides, SEED extends the current standard without changing

any existing protocols. Deploying SEED thus does not affect any

operating 5G functions.

Incremental deployment Operators can gradually deploy SEED,
as a partial implementation already diagnoses some failures. They

can first deploy infra and SIM Applet modules to support diagnosis

and handling of control/data-plane failures. These modules can

cover 63% of failure cases in the traces. The first stage is easy to

deploy: all necessary info for the network module can be extracted

from core signalings while the SIM applet could be updated through

readily-available OTA channel. The operators can then update the

carrier app to include failure report service and action module. The

carrier app has been widely deployed by operators [59, 61]. With

the enhanced failure handling added, all considered failures in this

paper can be diagnosed and handled.

7 EVALUATION
We evaluate how SEED diagnoses and handles failures. We first

evaluate the overall performance on the testbed with failures in our

datasets. We also compare the application performance between

SEED and existing failure handling schemes. We then assess SEED
overhead, diagnosis time, and recovery speed for multi-tier reset

with and without root privilege.

Experimental Setup We implement the diagnosis assistant

module with 5G-compliant Magma Core [39] on an Ubuntu 18.04
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Figure 10: Experimental testbed
setup

Failures Handling Median 90th

Control

Plane

Legacy 12.4 1024.0

SEED-U 8.0 76.7

SEED-R 4.4 48.6

Data

Plane

Legacy 476.0 2659.4

SEED-U 0.9 1.0

SEED-R 0.6 0.7

Data

Delivery

Legacy 31.2 45.7

SEED-U 1.1 1.3

SEED-R 0.4 0.7

Table 4: Disruption (s) percentile
with legacy handling and SEED

Apps C-plane (s) D-plane (s) D-Delivery (s)
Leg. S.U S.R Leg. S.U S.R Leg. S.U S.R

Video 68.3 1.1 1.0 184.5 0.0 0.0 75.0 0.0 0.0

Live Stream 79.2 4.3 3.5 199.2 1.5 1.1 105.4 0.5 0.0

Web 80.3 6.8 5.4 200.8 1.8 1.6 110.5 0.8 0.3

Navigation 78.3 5.0 4.1 199.9 1.3 1.2 106.7 0.2 0.0

Edge AR 81.9 6.7 5.7 201.9 2.6 2.1 108.2 1.3 0.4

Table 5: Average app disruption (s) with legacy (Leg.)
failure handling, SEED-U (S.U) and SEED-R (S.R)

server with i7-9700K 8-core CPU and use USRP B210 as the RF

frontend (Figure 10). Our testbed utilizes the 5G-NSA. The long

timers are shared between SA and NSA and dominate the disruption

time during failures. Moreover, most of SA failure cause codes have

inherited NSA error codes. Although SA splits its core functions into

different components, the signaling processing and transmission

times between SA and NSA incur negligible difference for SEED. The
results thus also reflect SEED performance for SA deployment. We

deploy the SEED applet on a Javacard-based eSIM [66] with 180KB

EEPROM and 8KB RAM. We assess the performance on Google

Pixel 5 with Qualcomm Snapdragon 765G running Android 12.

This work does not raise any ethical issues.

7.1 Overall Performance
7.1.1 Comparison of failure diagnosis and handling. We first ex-

amine SEED overall performance. To compare it with the current

modem-based solution, we utilize the dataset in §3.1 to evaluate

how many control/data plane management failures SEED could han-
dle. We extract failure traces from the dataset and reproduce failures

on the testbed to assess SEED handling. For data delivery failures,

we compare the current Android scheme and SEED handling.

For control-plane management failures, 89.4% of failures in the

dataset could be handled by SEED. The remaining cases are due

to identity authentication failures from unauthorized subscribers.

Table 4 compares the disruption time with existing device failure

handling and SEED. Without root privilege, SEED-U could reduce

the median disruption time by a factor of 0.6× (12.4→8.0s). SEED-R
further speeds up the recovery and reduces the 90th percentile

disruption by 20× (1024.0→48.6s). The waiting timer (2s in testing)

in SEED before triggering control-plane failure handling ensures

that the transient failure will not be delayed by reset. With the

timer, SEED control-plane handling only causes longer disruption

for 5% (SEED-U) and 2% (SEED-R) failures.
For data-plane management failures, SEED handles 95.5% of the

cases in the dataset with its configuration update and fast data-

plane reset. Other cases are from expired subscribers and require

reactivation of their data plans. The failure handling without root

privilege could recover 90% of cases with <1s disruption. With the

root privilege, half of the failure cases could be recovered within

0.6s, which reduces the disruption time by 792×. SEED prevents the

long disruptions incurred by repeated, blind retries at devices.

We further evaluate how well SEED handles data delivery fail-

ures. Our experiments show that, if data delivery failures are in-

duced by widely reported incorrect network-side configurations

(e.g., TCP/UDP blocking, etc.), Android or modems’ naive retry

schemes cannot recover from them. Current application-level tools

(e.g., NetMotion [44]) also rely on the ongoing data connection

and cannot report the failure under traffic blocking. In contrast,

we validate that SEED successfully transmits failure reports, which

can trigger network-side policy checking and updating for failure

recovery. For failures that could be recovered from reconnections

(outdated gateway status in mobility, etc.), we compare the choices

of Android sequential retries and SEEDmulti-tier reset. The Android

timers between recovery actions are set to the recommended con-

figuration values (21s/6s/16s) in [35]. Despite with shorter timers,

Android still incurs more than 31.2s disruptions for 50% of cases.

In contrast, SEED fast data-plane reset and modification handle all

cases in the experiments, and recover the data connection within

0.4s for 50% of cases and 0.7s for 90% of cases.

7.1.2 Reducing Application Disruption. We further examine the

failure impact on various applications with current device handling

schemes and SEED. In the experiment, we assess both the SEED-U
and SEED-Rmodes. We measure the average app disruption time on

five types of latency-sensitive applications, including video (with

YouTube [64]), live streaming (with Twitch [57]), Web browsing

(with Chrome [18]), navigation app (with Google Maps [28]), and

an edge AR application developed by us. The video app has its long

buffering time (∼30s) while the live streaming possesses a shorter

buffer (∼3s). The Web browser visits the social network site, and

the navigation app periodically uploads its location for the latest

traffic information. The AR app keeps sending the camera view to

the edge and retrieves real-time recognition results without a video

buffer. We collect traffic traces of five applications and develop

a background daemon to emulate the corresponding app’s traffic

pattern and send failure reports for the application.

SEED reduces failure recovery time for all five applications, as

shown in Table 5. The fast failure report scheme and multi-tier

reset allow the video app to tolerate all data-plane management

and data-delivery failures in experiments. SEED reduces disrup-

tions by up to 67× (68.3→1.0s) for control-plane failures. For live

streaming with a short buffer, SEED reduces the average control-

plane failure time to 4.3s (SEED-U) and 3.5s (SEED-R). For data
delivery failure, SEED-R could still handle such cases and mask

user-perceived disruptions. For Web browsing, SEED reduces dis-

ruptions from 80.3∼200.8s to 0.3∼6.8s for various failures. SEED also
reduces the navigation app disruptions from 78.3∼199.9s to 0.2∼5.0s
(SEED-U) or 0∼4.1s (SEED-R). The AR app is the most disruption-

sensitive app. Although Android is reconfigured with a shorter

action timer, its limited detection scheme takes more than 1 minute

to detect the data stall failure and recovers after 108.2s disruptions

on average. In contrast, SEED takes the fast data-plane reset ap-

proach, and recovers the AR service within 1.3s (SEED-U) and 0.4s

(SEED-R) on average.
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Figure 11: Diagnosis overhead on network/device side

7.2 Micro-Benchmarks
7.2.1 Lightweight Failure Diagnosis. We next examine the SEED
scalability at the network and the overhead at the device. Our ex-

periments confirm that, SEED is scalable to large device population,

and lightweight with low overhead at devices. For the network,

we use the magma RAN/UE emulator to emulate loads in the core.

We emulate 200 devices performing attach/detach procedures ran-

domly and trigger failure events with different frequencies. Fig-

ure 11a shows the average CPU utilization with the default magma

core with and without SEED. SEED incurs only 4.7% extra CPU pro-

cessing, in the stress test of artificially injecting 100 failures per

second. SEED scales with decision-tree-based failure diagnosis with-

out heavy processing. The number of extra signaling messages

(Auth Request/Failure or PDU Session Estb Request/Reject) from

the real-time collaboration is marginal compared with the normal

control/data plane procedures.

We further gauge the overhead at the device side. The SEED

diagnosis is based on SIM’s built-in processor and RAM, which is

more energy efficient compared with the phone’s CPU. By default,

we measure the device battery consumption without background

application traffic. We then run a stress test that triggers the SIM

diagnosis once per second to quantify its energy overhead. As

shown in Figure 11b, SEED consumes an extra 1.2% (5.4%→6.6%)

of the total battery in 30 minutes. Given that the failure frequency

in our test is much higher than in reality, the SIM diagnosis incurs

negligible overhead. We further compare SEED with the device-side

cellular diagnosis application MobileInsight [36]. MobileInsight

relies on the message decoded from the diag port for analytics and

consumes an extra 8.5% (5.4%→13.9%) of the total battery in 30

minutes. SEED thus performs lightweight diagnosis at the device.

7.2.2 Real-time SIM-Network Collaboration. SEED enables the real-

time collaboration with standard-compliant signaling messages.

Figure 12 shows the total latency of network-to-device (downlink)

and device-to-network (uplink) directions. For the downlink, when

the network detects the failure, it first prepares the message with

extra information and encodes it into the Authentication Request,

which takes 12.8ms on average. The transmission takes 41.2ms

on average from the message sent out to the ACK received. On

the device side, SEED provides APIs for App/OS failure report to

speed up the failure detection. The preparation includes information

reporting, SIM encoding, and message generation, which takes

35.9ms on average. Then the transmission takes 46.3ms on average

to notify the network side for further actions. Compared with the

Android failure detection, which needs 1.8 minutes to detect the

failure, SEED speeds up the failure detection stage with fast SIM-

Infra collaboration.

downlink uplink
Diag Info Direction

0

20

40

60

80

100

La
te

nc
y 

(m
s)

Prep
Trans

Figure 12: SIM-Infra Collab-
oration Latency

Hardware C-Plane D-Plane
Handling Level

0

10

20

30

40

H
an

dl
in

g 
Ti

m
e 

(s
) Legacy

SEED-U
SEED-R

Figure 13: Recovery time for
multi-tier reset

7.2.3 Multi-tier Reset. With diagnosis information from both sides,

SEED performs the multi-tier reset for fast recovery. Compared with

the legacy level-by-level sequential retry, SEED directly resets the

corresponding module, eliminating long waiting interval between

actions. For baseline, we use Android sequential retry with the

recommended intervals (21s/6s/16s) between four actions in [35].

Although these intervals are much shorter than the Android default

3-min interval, it still causes a long time to trigger handling actions.

As shown in Figure 13, the legacy scheme takes 42.5s on average

to reset the hardware. Without root access, SEED takes 5.9s on

average for hardware reset. SEED further speeds up the hardware

reset with root privilege leveraging AT commands, which takes

3.3s and reduces 92% waiting time. For control-plane reset, the

legacy scheme takes 27.8s. The SIM parameter updates (A2) need

to be combined with reloading to trigger the control-plane reset

and take 6.1s. With root privilege, the control-plane reattachment

takes 2.6s for control-plane reset. The legacy scheme does not reset

the data plane but all TCP connections, which still needs 21.4s to

trigger the failure handling. SEED triggers the carrier app to update

configurations for the data-plane reset (A3) and designs fast data

plane reset/modification with root privilege (B3), which takes 0.88s

and 0.42s, respectively. SEED multi-tier reset shows a fast failure

handling without long level-by-level retries.

7.2.4 Online Learning. The current public datasets do not provide

the infrastructure-side failure traces. We validate the effectiveness

of the online learning algorithm by triggering failures at our testbed.

In our experiments, 6 phones of different models (Google, Xiaomi,

etc.) are connected to the testbed network. On the network side, we

choose 4 control-plane and 4 data-plane functions and manually

trigger failures for each function 50 times to generate unstandard-

ized failures. The network customizes failure codes based on the

failed function and performs online learning for future recovery

suggestions. Our results show that the crowd-sourced SIM records

correctly classify all failures into control or data plane failures and

recommend corresponding reset actions, which shows the effec-

tiveness of the online learning algorithm.

7.3 Security Analysis
Our analysis shows that SEED does not degrade the legacy SIM

security. The applet could only be installed with the carrier’s key;

adversaries cannot modify or replace it. Only the operators could

update the SIM configurations, or perform reset from the SIM.

The SIM-infra communication is encrypted and integrity protected

with the pre-shared in-SIM key with the message counter, which

uses the same crypto algorithms as the 5G signaling. The new ap-

plet interface within the assistance information is protected with

cellular-grade security. The in-SIM key is hard to be compromised
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by attackers, thus the information is hard to be faked and skip the

SIM checking. The applet leverages existing channels provided by

the mobile OS to communicate with the modem/carrier app, which

does not induce new loopholes. At the device, only the applica-

tion matching SIM-embedded signatures could acquire the carrier

privilege. The carrier app ensures SIM security by isolating direct

communication between user apps and SIM. The carrier app further

checks and filters the failure report inputs to ensure security.

8 RELATEDWORK
Mobile failure diagnosis has been an active topic for years. It is an

important area, as a correct diagnosis result helps optimize device

performance [20, 33, 34, 37, 65] or fixes RAN/core [5, 46]. Unfortu-

nately, such diagnosis typically relies on the one-side information,

either at the device [36, 62, 63] or inside the network [27, 45]. The

lack of panoramic view makes diagnosis slow and error-prone. On

the other hand, our failure diagnosis combines the information

from both sides with a novel SIM-based solution that enables col-

laboration between the device and the network. To the best of our

knowledge, SEED is the first work that proposes SIM-based failure

diagnosis. Current commercial diagnosis tools such as NetMotion

[44] collect both-side information, but only monitor the high-level

metrics (e.g., network performance, connection drop rate, etc.) with-

out failure diagnosis in the cellular stack. The collaboration between

the network and the device also halts once the data connection is

broken upon failures [52]. In contrast, SEED diagnoses cellular fail-

ures and performs runtime handling even if the data connection is

broken or not fully established.

Prior efforts focus on other issues and cannot achieve failure

handling with decent speed and accuracy. [35] measures cellular re-

liability and optimizes the existing Android error handling scheme;

it lacks fine-grained failure diagnosis and handling. Meanwhile,

network-side diagnosis [46] can barely help the devices recover

from failures. Our work bridges the network and the device, and

achieves runtime, fine-grained failure handling. Unlike conven-

tional data center network failure diagnosis [24, 68] that utilizes

active probing [29] or trace monitoring [32], our design leverages

the 5G standardized failure causes with readily accessible metrics

for diagnosis and handling, thus keeping the solution light-weight

and scalable.

9 DISCUSSION
SEED focuses on failure diagnosis and treatment for the 5G proto-

col stack, but does not explicitly diagnose and handle underlying

radio link issues or application-level failures. Such physical-layer

or app-level issues may affect control/data-plane management and

data delivery. The resulting failures will be implicitly detected and

handled by SEED. SEED can be further extended to support radio

condition diagnosis with runtime modem measurements and gNB

information on dynamic radio signals.

SEED leverages the undefined fields of the 5G signaling messages

within the 3GPP standards, thus being compatible with current

mobile OSes and radio access networks. SEED still requires changing
the SIM applet and the core network. For SIM/eSIM, operators could

update the applet through OTA. The eSIM uses a programmable

chip to store SIM profiles from different operators. eSIM supports

the SIM’s applet format, and SEED applet could be directly applied.

For the network side, operators with the cloud-based core network

implementations could deploy SEED with software updates at the

core. A new module can be added to handle diagnosis messages and

perform online learning. SEED only introduces a small amount of

extra signaling, thus unlikely to trigger anomaly detection deployed

by operators. If false alarm is triggered, operators may readjust the

related filter rules for diagnosis messages.

The SEED-Rmode requires root access to send the AT commands.

The current standard has supported the SIM to trigger AT com-

mands directly at the modem with proactive commands [23]. It

has been deployed on some IoT modems [58], but not on current

5G smartphone modems yet. If the modem enables the interface,

SEED becomes a rootless solution. With the current modems, if the

OS provides APIs for the carrier app to initialize AT commands

without root, SEED could also become rootless.

SEED can be adapted to diagnose new 5G functionalities. One

upcoming feature is network slicing [25, 26], where failure could

arise to a given slice. Although this increases the complexity of

detection and handling, SEED enables fine-grained diagnosis and

handling. Therefore, it could reset or modify the failed network

slice without affecting other functioning slices.

10 CONCLUSIONS
The global rollout of 5G mobile systems is underway. Similar to

every large-scale networked system, failures become the norm,

rather than exceptions, in 5G. This has been confirmed by recent

empirical studies [35, 62]. As 5G is going to higher radio spectrum

and the cell size is getting smaller, frequent handovers further

aggravate the chances for failures. If left unattended, such failures

will affect the normal operations of 5G applications, particularly

those emerging ones (e.g., AR/VR/MR), due to prolonged network

disruptions. The current solutions do not diagnose the error causes

and use the blind, sequential retry approach to failure handling.

In this work, we describe the design, implementation, and evalu-

ation of SEED, a novel SIM-based solution to 5G failure diagnosis

and handling. SEED leverages the available error codes carried by

standardized 5G signaling messages for root cause inference. It

further enhances the diagnosis with a simple, domain-specific ma-

chine learning algorithm. SEED takes adaptive, multi-tier reset/redo

actions (reset protocol operations, refresh outdated configurations,

reload profiles, etc.) once the failure cause is inferred. Our evalua-

tion has confirmed the viability of SEED.
For fast adoption and deployment, we take the operator’s view

in the design of SEED. As the global 5G rollout is ongoing, we

believe the operator is in the best position for 5G failure manage-

ment solutions. The components of SEED can be readily installed

to 5G subscribers when they activate their devices with the carrier.

The software updates can be easily completed with the current

operators’ practice. We are working with a prime US operator for

assessment and early trials. In the broader context, we believe 5G

failure management needs more activities from the research com-

munity; this work describes our initial effort along this direction.
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A STANDARDIZED FAILURE CAUSES
RELATED TO CONFIGURATION ISSUES

Control plane management failures with the required configura-

tions from the infrastructure:

• #26-Non-5G authentication unacceptable: Supported RAT

• #27-N1 mode not allowed: Supported RAT

• #31-Redirection to EPC required: Supported RAT

• #62-No network slices available: Sugested S-NSSAI

• #72-Non-3GPP access to 5GCN not allowed: supported RAT

• #91-DNN not supported or not subscribed in the slice: Suggested

DNN

• #95-Semantically incorrect message: Invalid/missed config

• #96-Invalid mandatory information: Invalid/missed config

• #100-Conditional IE error: Invalid/missed config

Data plane management failures with the required configura-

tions from the infrastructure:

• #27-Missing or unknown DNN: Suggested DNN

• #28-Unknown PDU session type: Suggested session type

• #33-Requested service option not subscribed: Suggested DNN

• #39-Reactivation requested: Suggested DNN

• #41-Semantic error in the TFT operation: Suggested TFT

• #42-Syntactical error in the TFT operation: Suggested TFT

• #43 –Invalid PDU session identity: Activated PDU session

• #44-Semantic errors in packet filter(s): Suggested packet filter

• #45-Syntactical error in packet filter(s): Suggested packet filter

• #54 –PDU session does not exist: Activated PDU session

• #59-Unsupported 5QI value: Suggested 5QI

• #68-Not supported SSC mode: Suggested packet filter

• #70-Missing or unknown DNN in a slice: Suggested DNN

• #83-Semantic error in the QoS operation: Suggested packet filter

• #84-Syntactical error in the QoS operation: Suggested packet

filter

• #95-Semantically incorrect message: Invalid/missed config

• #96-Invalid mandatory information: Invalid/missed config

• #100-Conditional IE error: Invalid/missed config

B AT COMMANDS LIST FOR FAST FAILURE
HANDLING

• Modem reset: AT+CFUN

• PLMN selecion: AT+COPS

• Control-plane reattachment: AT+CGATT

• Data session setting: AT+CGDCONT

• Data plane reset: AT+CGACT
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