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Abstract—The wide adoption of third-party libraries in soft-
ware projects is beneficial but also risky. An already-adopted
third-party library may be abandoned by its maintainers, may
have license incompatibilities, or may no longer align with current
project requirements. Under such circumstances, developers need
to migrate the library to another library with similar function-
alities, but the migration decisions are often opinion-based and
sub-optimal with limited information at hand. Therefore, several
filtering-based approaches have been proposed to mine library
migrations from existing software data to leverage “the wisdom
of crowd,” but they suffer from either low precision or low
recall with different thresholds, which limits their usefulness in
supporting migration decisions.

In this paper, we present a novel approach that utilizes multiple
metrics to rank and therefore recommend library migrations.
Given a library to migrate, our approach first generates candi-
date target libraries from a large corpus of software repositories,
and then ranks them by combining the following four metrics
to capture different dimensions of evidence from development
histories: Rule Support, Message Support, Distance Support, and
API Support. We evaluate the performance of our approach with
773 migration rules (190 source libraries) that we borrow from
previous work and recover from 21,358 Java GitHub projects.
The experiments show that our metrics are effective to help
identify real migration targets, and our approach significantly
outperforms existing works, with MRR of 0.8566, top-1 precision
of 0.7947, top-10 NDCG of 0.7702, and top-20 recall of 0.8939.
To demonstrate the generality of our approach, we manually
verify the recommendation results of 480 popular libraries not
included in prior work, and we confirm 661 new migration rules
from 231 of the 480 libraries with comparable performance. The
source code, data, and supplementary materials are provided at:
https://github.com/hehao98/MigrationHelper.

Index Terms—library migration, mining software repositories,
library recommendation, multi-metric ranking

I. INTRODUCTION

Modern software systems rely heavily on third-party li-

braries for rich and ready-to-use features, reduction of devel-

opment cost and productivity promotion [1], [2]. In recent

years, the rise of open-source software and the emergence

of package hosting platforms, such as GitHub [3], Maven

Central [4] and NPM [5], has led to an exponential growth

of open source libraries. For example, the number of newly-

published JARs in Maven Central is 86,191 in 2010, 364,268

in 2015, and over 1.2 million in 2019 [4]. Nowadays, open-

source libraries can satisfy a diverse spectrum of development
§Minghui Zhou is the corresponding author.

Fig. 1. An example migration between JSON libraries

requirements, and are widely adopted in both commercial and

open-source software projects [6].

However, third-party libraries are known to cause problems

during software evolution. First, third-party libraries may have

sustainability failures [7], [8]. They may be abandoned by

their maintainers due to lack of time and interest, difficulty in

maintenance, or being superseded by competitors [7]. Second,

third-party libraries may have license restrictions [9], [10]. If a

project uses a GPL-licensed library during early prototyping,

it must be replaced before the project is released as proprietary

software. Finally, third-party libraries may fail to satisfy new

requirements due to absence of features, performance issues,

etc. Suppose a Java application at its infancy stage is using

org.json:json [11] for its simplicity. When the application

matures and scales, it often has to migrate to another JSON

library for richer features or higher performance (see Figure 1

for an example). To address any of these issues, software

projects have to replace some already-used libraries (i.e.,

source libraries) with some other similar or functionality-

equivalent libraries (i.e., target libraries). Such activities are

called as library migration in the related literature [12]–[19].
However, it is often not easy to find good target libraries

and choose between a number of candidate libraries [12], [20],

[21]. Community curated lists such as awesome-java [22]

and AlternativeTo [23] are often non-informative and contain

low quality libraries, while blog posts and articles tend to

be opinion based and outdated [20]. The easily accessible

metrics such as popularity and release frequency have lim-

ited usefulness and they vary with domain [21]. In practice,

industry projects often rely on domain experts for making
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migration decisions [24], while open source projects only

migrate libraries when core developers reach a consensus in

discussions [15]. In either case, the migration is not guaranteed

to be appropriate, cost-effective or beneficial to the project.

To address these challenges, researchers have proposed

several approaches to mine library migrations from existing

software data [12], [14], [17]. The underlying rationale is that

historical migration practices provide valuable reference and

guidance for developers when they make migration decisions,

and the optimal decisions can be discovered from “the wisdom

of crowd” if the analyzed software corpus is large enough

and of high quality. Their approaches first mine candidate

migration rules from a large number of projects, and then

filter the candidates based on frequency [12] or related code

changes [17]. However, their approaches suffer from either

low recall [12], [17], or low precision [12], [14] for two

reasons. First, a global filtering threshold is defined but not

equally effective for all migration scenarios, thus hard to reach

a performance balance. Second, valuable information sources

are not considered in their filtering metrics. The usefulness of

existing approaches is also limited, because a low precision

will result in high human inspection effort, while a low recall

prevents developers from making optimal decisions because

some migration opportunities may be missed.

To improve the effectiveness of these approaches [12], [14],

[17], we propose a new approach for automated recommen-

dation of library migration targets from existing software

development histories. Instead of mining and filtering, we

formulate this problem as a mining and ranking problem,
because we observe that relative ranking positions are not only

more important but also more robust to metric and parameter

changes. Given a source library, our approach first mines target
library candidates from the dependency change sequences

(defined in Section II-B) built from a large corpus of software

development histories. After that, the candidates are ranked
based on a combination of four carefully designed metrics:

Rule Support, Message Support, Distance Support and API

Support. The metrics are designed to capture different sources

of evidence from data and pinpoint likely migration targets

based on the evidences. Finally, the top target libraries, their

metrics, and the relevant migration instances are returned for

human inspection. Our approach is implemented as a web

service, which can be used by project maintainers to seek

migration suggestions or support their migration decisions.

To implement our approach, we collect version control data

of 21,358 Java GitHub repositories and successfully extract

147,220 dependency change sequences from their dependency

configuration files. To support metric computation, we also

collect Maven artifacts from Maven Central [4] using Li-

braries.io [25], and extract API information for each collected

Maven artifact. To evaluate the performance of our approach,

we recover and extend migration rules in [14] from the

collected 21,358 repositories and get a ground truth of 773

migration rules (190 source libraries). We use the 190 source

libraries as query to our approach, which returns 243,152

candidate rules along with their metrics. The candidate rules

include all ground truth migration rules mentioned above.

Then, we estimate and compare survival functions for each

metric, and compute Mean Reciprocal Rank (MRR) [26], top-

k precision, top-k recall and top-k Normalized Discounted
Cumulative Gain (NDCG) [27] for our approach along with

existing approaches and a number of other baselines. Fi-

nally, we experiment our approach on additional 480 popular

libraries both to ensure our approach is generalizable and

to confirm more real world migrations. Our experimental

evaluations show that the metrics are effective to help identify

real migration targets from other libraries, the method that

combines all four metrics can reach MRR of 0.8566, top-

1 precision of 0.7947, top-10 NDCG of 0.7702 and top-20

recall of 0.8939 in the ground truth dataset, and we confirm

661 new migration rules with comparable performance. Our

approach has been deployed in a proprietary 3rd-party library

management tool to recommend migration targets for libraries

in the deny list.

We make the following contributions in this study:

1) formulate the library migration recommendation prob-

lem as a mining and ranking problem,
2) propose a new multi-metric ranking approach via min-

ing dependency change sequences, which significantly

outperforms existing approaches,

3) implement and conduct a systematic evaluation for our

approach, showing that the approach is effective in

suggesting migration targets for Java Maven projects,

4) provide a latest ground truth dataset of 1,384 migration

rules and 3,340 related commits discovered from 1,651

open source Java projects. The dataset can be used to

facilitate further research in library migration.

II. BACKGROUND

We first provide a brief introduction to the context of

our approach. We then define common terminologies and

a dependency model, and formulate the library migration

recommendation problem. Finally, we discuss the existing

approaches provided by Teyton et al. [12], [14] and Alrubaye

et al. [17], before introducing our approach in the next section.

A. Library Migration

Migration is a common phenomenon in software mainte-

nance and evolution, and may refer to different development

activities that stem from various motivations. Common cases

of migrations in software development include: migrating from

a legacy platform to a modern platform [28], [29], one pro-

gramming language to another programming language [30]–

[36], one library version to another library version [37], [38],

one API to another API [13], [16], [39]–[44], or one library

to another library [12], [14], [15], [17], [45], [46]. In this

paper, we use the term library migration to refer to the
process of replacing one library with another library of similar

functionalities, as in [12]–[19].

Two steps are typically needed for a library migration.

The first step is to decide which library to migrate to and

whether a migration is worthy. The second step is to conduct
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Fig. 2. An example dependency change sequence

the real migration by modifying API calls in source code,

changing configuration files, etc1. For example, Kabinna et

al. [15] study logging library migrations in Apache Software

Foundation (ASF) projects. They discover that ASF projects

conduct logging library migrations for flexibility, new features

and better performance, but the code changes are hard and

bug-prone, and some projects fail to migrate due to absence

of submitted patches or lack of maintainers’ consensus. Given

current situation, the main objective of our approach is to

provide explainable and evidence based support to the first
step of migration, such that developers can make the most

appropriate migration decision for their project based on the

recommendation results. As introduced earlier, the existing

approaches to achieve this goal suffer from low precision or

low recall, and limited usefulness in practice.

B. Terminologies and Dependency Model

Let P be the set of projects and L be the set of libraries to
be analyzed. A project p ∈ P has a set of revisions Rev(p) =
{r1, r2, ..., rn}, where each revision has zero, one or more
parent revisions. We define ri < rj if ri happens before rj in
p, and vice versa. For each revision ri ∈ Rev(p), it depends
on a set of libraries Li ⊂ L, which we call dependencies of
ri. By comparing with its parent revision(s) (e.g. ri−1), we

can extract the dependency changes of ri as
2

L+
i = Li − Li−1 (1)

L−i = Li−1 − Li (2)

where L+
i is the set of added libraries and L−i is the set

of removed libraries. By sorting all revisions in topological

order and aggregating dependency changes, we can build a

dependency change sequence Dp for project p.

Dp = L+
1 , L

−
1 , L

+
2 , L

−
2 , ..., L

+
n , L

−
n (3)

We use the term dep seq as an abbreviation of dependency
change sequence in the subsequent paper.
For library a ∈ L and library b ∈ L, we consider (a, b) as a

migration rule if and only if ∃p ∈ P, ri, rj ∈ Rev(p), p has
conducted a migration from a to b between ri and rj , where
b ∈ L+

i and a ∈ L−j . Note that a migration may either happen
in one revision (ri = rj), or spans over multiple revisions
(ri < rj). We refer to a as source library and b as target
library in the subsequent paper.
Figure 2 shows an artificial example of a dependency change

sequence where a project performs a migration from library A
to F in revision r5. In this case, L

+
5 = {F} and L−5 = {A},

and (A,F ) is a migration rule by our definition.
1See Section VIII for related work about the second step.
2We will discuss how we deal with multi-parent revisions in Section IV.

C. Problem Formulation

We formulate the problem of library migration recommen-

dation as follows. Let R be the set of all migration rules.
Given projects P , libraries L, dep seqs Dp for p ∈ P , and
a set of library queries (i.e. source libraries) Q, the objective
of library migration recommendation is to identify migration
rules with both high coverage (for objectivity) and accurate

results (for minimizing human inspection effort). For library

a ∈ Q, an approach should seek to find migration targets
T = {b|(a, b) ∈ R}. We view this problem as a two-step
mining and ranking problem. In the mining step, an approach

should generate a candidate rule set Rc from all dep seqs.

In the ranking step, for all (a, b) ∈ Rc, it should compute

a confidence value conf(a, b) and sort Rc by this value. It

should ensure that the target libraries in top ranked candidate

rules are more likely to be real migration targets.

D. Existing Approaches

In this section, we introduce several existing approaches

under our problem formulation. Teyton et al. [12] define

candidate rules as the Cartesian product of added and removed

libraries in the same revision. More formally, for project p,

Rp
ci = {(a, b)|(a, b) ∈ L−i × L+

i , ri ∈ Rev(p)} (4)

Rc =
⋃

p∈P

⋃

ri∈Rev(p)

Rp
ci (5)

And they define confidence value as the number of revisions

a rule occurs divides the maximum number of all rules with

same source or same target as follows.

confT (a, b) =
|{ri|(a, b) ∈ Rp

ci}|
max(|{(a, x) ∈ Rc}|, |{(x, b) ∈ Rc}|) (6)

It captures most frequent rules and is partially reused in our

first metric RS (Section III-B1). Their approach requires man-
ual specification of a threshold t, and they consider a candidate
rule (a, b) as a migration rule if and only if confT (a, b) ≥ t. In
their evaluation, by setting t = 0.06, they confirm 80 migration
rules with a precision of 0.679 in 38,588 repositories.

In their subsequent work [14], they also consider migra-

tions that spans over multiple revisions, using the following

definition of candidate rules

Rc =
⋃

p∈P
{(a, b)|(a, b) ∈ L−j × L+

i , ri ≤ rj} (7)

By this definition, (A,C), (A,D), (A,E) and (A,F ) in
Figure 2 will all be considered as candidate rules given A
as source library. In the hope of covering as many migration

rules as possible, they manually verify 17,113 candidate rules

generated from 15,168 repositories, in which they successfully

confirm 329 migration rules.

Alrubaye et al. [17] propose a tool called MigrationMiner,

which uses the same candidate rule definition as in [12], but

filters candidate rules by their relative frequency and whether

API replacements occur in code changes. Their filtering strat-

egy can be effectively described in our framework as Rule

Support RS(a, b) = 1 and API Count AC(a, b) > 0 (See
Section III for their definitions). The tool is tested on 16

repositories where 6 migration rules can be confirmed with
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TABLE I
COMPARISON WITH MOST RELATED WORK [12], [14], [17]. SEE SECTION V FOR MORE PERFORMANCE COMPARISONS.

Approach Candidate Rules for A in Figure 2 Migration Rule Selection Reported Performance

Teyton et al. [12] (A,F ) confT (a, b) ≥ 0.06
0.679 precision, 80 migration rules
confirmed in 38,588 repositories

Teyton et al. [14] (A,C), (A,D), (A,E), (A,F ) All candidate rules
0.019 precision, 329 migration rules
confirmed in 15,168 repositories

Alrubaye et al. [17] (A,F ) RS(a, b) = 1 ∧AC(a, b) > 0
1.000 precision, 6 migration rules
confirmed in 16 repositories

Our Approach (A,C), (A,D), (A,E), (A,F ) Rank by conf(a, b) (Equation 15)
0.795 top-1 precision, 1,384 migration rules
confirmed in 21,358 repositories

100% precision. Table I provides a summary and comparison

of existing approaches along with ours.

III. OUR APPROACH

Our approach for recommending library migration involves

two steps, a mining step and a ranking step. We first describe

how candidate rules are mined for each dep seq. Then we detail

how we design the four ranking metrics. Finally, we describe

the confidence value, ranking strategy, and the pseudo code

for our final algorithm.

A. Mining Candidate Rules
Given a library a, the first step of our recommendation

algorithm is to find a set of candidate rules {(a, x)}, in which
x may be a feasible migration target. We follow a similar
process like in [14] for mining candidate rules Rc (Equation

7), due to its high coverage. Since it is known to generate

many false positives, we will specifically consider candidate

rules mined from the same revision (Rp
ci in Equation 4) during

metric computation. We also collect all the relevant revision

pairs for each candidate rule (a, b), defined as

Rev(a, b) = {(ri, rj)|a ∈ L−j ∧ b ∈ L+
i ∧ ri ≤ rj} (8)

B. Four Metrics for Ranking
1) Rule Support: For each candidate rule (a, b), we define

Rule Count RC(a, b) as the number of times a is removed
and b is added in the same revision:

RC(a, b) = |{ri|(a, b) ∈ Rp
ci, ∀p ∈ P, ri ∈ Rev(p)}| (9)

We define Rule Support RS(a, b) as Rule Count divides the
maximum value of Rule Count for all candidate rules with a
as source library:

RS(a, b) =
RC(a, b)

max(a,x)∈Rc
RC(a, x)

(10)

This metric is basically a reuse of confT (a, b) in Equation
6, based on the intuition that the most frequent same-revision

dependency changes are more likely to be library migrations.

We omit the second denominator because it can only be

computed with a full-scale mining (Q = L), which is costly
given the current number of libraries.

2) Message Support: Besides the “implicit” frequency-
based hint characterized by Rule Support, we observe that the

“explicit knowledge” provided by developer written messages

accompanying revisions (e.g. commit messages or release

notes) is extremely valuable. Therefore, we design the fol-

lowing heuristic to determine whether a revision pair (ri, rj)
seems to be doing a migration from a to b:

1) First, we split the names of a and b into possibly in-
formative parts, because developers often use shortened

names to mention libraries in these messages.

2) For ri = rj , we check whether its message is stating a
migration from a to b.

3) For ri 	= rj , we check whether the message of ri is
stating the introduction of library b while mentioning a,
and whether the message of rj is stating the removal of
a as a cleanup.

The checks are implemented via keyword matching of library

name parts along with different hint verbs for migrations, addi-

tions, removals, and cleanups. For example, we consider words

like “migrate”, “replace”, “switch” as hinting a migration. We

also iteratively refined the keyword matching strategies using

ground truth commits discovered in Section V.

Let h(ri, rj) 
→ {0, 1} be the heuristic function described
above, where h(ri, rj) = 1 when the messages are considered
as indicating a migration by our heuristic. We define Message

CountMC(a, b) as the number of revision pairs (ri, rj) whose
messages are indicating a migration from a to b, where b is
added in ri and a in removed in rj :

MC(a, b) = |{(ri, rj)|(ri, rj) ∈ Rev(a, b)∧h(ri, rj)}| (11)
And we further define Message Support MS(a, b) as

MS(a, b) = log2(MC(a, b) + 1) (12)

3) Distance Support: The previous two metrics do not
take into consideration multi-revision migrations without any

meaningful messages, but such cases may still be common

because not all developers write high quality messages. Based

on the observation that most real target libraries are introduced

near the removal of source library, we design the Distance

Support metric to penalize the candidates that often occur

far away. Let dis(ri, rj) be the number of revisions between
revision ri and rj (0 if ri = rj). We define Distance Support
DS(a, b) as the average of the inverse square distances of all
revision pairs (ri, rj) ∈ Rev(a, b):

DS(a, b) =
1

|Rev(a, b)|
∑

Rev(a,b)

1

(dis(ri, rj) + 1)2
(13)

4) API Support: Another strong information source of a
library migration is the real code modifications and API

replacements performed between the two libraries. To capture

this, we define API Count AC(a, b) as the number of code
hunks3 in Rev(a, b) where the APIs (i.e. references to public
3A hunk is a group of added and removed lines extracted by the diff

algorithm of a version control system.
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methods and fields) of b are added and the APIs of a are
removed. Then, we define API Support as

AS(a, b) = max(0.1,
AC(a, b)

max(a,x)∈Rc
AC(a, x)

) (14)

The reason for setting a minimum threshold is to make AS
more robust in case no API change is detected for some

migration rules. It happens either because the code changes

are not performed synchronously with dependency configu-

ration files, or because some libraries can work solely with

configuration files. For example, a manual analysis of 100

migration commits from ground truth (Section V-B) reveals

that 45 migration commits do not contain any relevant API

changes, in which 26 commits only modify pom.xml files, 12

commits modify configuration files, and others modify code

in a way that the library APIs are not co-changed in one hunk.

C. Recommending Migration Targets

Our recommendation algorithm combines the four metrics

introduced above to generate a final confidence value for all

candidate rules, using a simple multiplication as follows:

conf(a, b) = RS(a, b) ·MS(a, b) ·DS(a, b) ·AS(a, b) (15)
For each library query l ∈ Q, the corresponding candidate
rules are sorted by this confidence value from the largest to

smallest. If the confidence values of some candidate rules

are the same, we further sort them using RS. Finally, the
recommendation results along with the relevant revision pairs,

grouped by each library query, are returned for human inspec-

tion. Algorithm 1 provides a full description of our migration

recommendation algorithm. After initialization of the required

data structure (line 1-5), we generate the candidate rules

and accumulate necessary data for metric computation in one

iteration of all projects and their dep seqs (line 6-14). After

that, the metrics and confidence values are computed through

another iteration of all candidate rules (line 15-24).

Several important optimizations can be applied to Algo-

rithm 1. First, the initialization in line 2-4 can be done lazily

to avoid excessive memory consumption. Second, for a project

with length n dep seq, the iteration in line 6 can be efficiently
done in O(n) by reversely traversing through the dep seq while
maintaining a set of removed libraries and relevant revisions.

Finally, we can precompute AC(a, b) for all (a, b) ∈ L × L
through one iteration of all project diffs, to avoid costly and

often repetitive on-demand computation of AC(a, b).

IV. IMPLEMENTATION

In this section, we go through important implementation

details for our approach, including design considerations,

implementation environment, and the data collection process.

Figure 3 provides an overview of our implementation.

A. Design Considerations

We choose to implement our approach for Java projects

because of Java’s popularity and industrial importance, and

also because previous works [12], [14], [17] are implemented

for Java. We choose to mine dep seqs only for Maven [47]

manged projects because it will make dependency extraction

Algorithm 1 Recommending Library Migration Targets
Input: Projects P , libraries L and library queries Q.
Output: For a ∈ Q, Rc sorted by conf(a, b).
1: Initialize: Rev(a, b)← ∅
2: for (a, b) ∈ L × L do
3: Initialize: RC(a, b)←MC(a, b)← DS(a, b)← 0
4: Initialize: AS(a, b)← 0.1
5: end for
6: for p ∈ P, a ∈ Q, b ∈ Rp

c , (ri, rj) ∈ Rev(a, b) do
7: Rev(a, b)← Rev(a, b) ∪ (ri, rj)
8: if ri = rj then
9: RC(a, b)← RC(a, b) + 1
10: end if
11: MC(a, b)←MC(a, b) + h(ri, rj)
12: DS(a, b)← DS(a, b) + 1/(dis(ri, rj) + 1)2

13: AC(a, b)← AC(a, b) + getAPICount(ri, rj)
14: end for
15: for (a, b) ∈ Rc =

⋃
p∈P Rp

c do
16: RS(a, b)← RC(a, b)/max(a,x)∈Rc

RC(a, x)
17: MS(a, b)← log2(MC(a, b) + 1)
18: DS(a, b)← DS(a, b)/|Rev(a, b)|
19: AS′(a, b)← AC(a, b)/max(a,x)∈Rc

AC(a, x)
20: if AS′(a, b) > AS(a, b) then
21: AS(a, b)← AS′(a, b)
22: end if
23: conf(a, b) = RS(a, b) ·MS(a, b) ·DS(a, b) ·AS(a, b)
24: end for
25: return For a ∈ Q, Rc sorted by conf(a, b)

trivial by parsing the pom.xml files. Each pom.xml file

has a dependency section where developers can declare used

libraries by stating their library group IDs, artifact IDs and

version numbers. During compilation, most declared libraries

are downloaded from Maven Central [4], which provides a

central hosting service for most Java open source libraries

indexed as “artifacts.” We consider artifacts with the same

group ID and artifact ID as one library, and the version string

as marking the different versions of a library. We do not

consider version number during recommendation. Although

multiple (group ID, artifact ID) may refer to the same library,

we do not handle such aliases, because we observe that a

renaming of group ID and artifact ID often accompanies

important library changes, such as major version updates,

intentional dependency shadowing, etc. Therefore, we consider

the migrations between such aliases as eligible migration rules.

However, we do not consider target libraries with the same

group ID as source library, because we observe that they are

often siblings, sub-components or auxiliary libraries that are

very unlikely to be a real migration target.

B. Implementation Environment

We implement our approach on a Red Hat Linux server

with 2 Intel Xeon E5-2630 v2 CPUs, 400GB RAM and 20TB

storage. It has access to World of Code [48], a database for

storing open source version control data including almost all

repositories from GitHub. We use World of Code because
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Fig. 3. Overview of the approach implementation, with some example data and results.

it offers much higher performance when constructing dep

seqs, compared with directly cloning from GitHub and an-

alyzing with git. The data is constructed using a collection

of Java programs and Python scripts, and stored in a local

MongoDB [49] instance. The final recommendation service is

implemented in Java using the Spring framework [50].

C. Data Collection

1) Library Metadata and API Retrieval: We use the Li-
braries.io dataset [25] (last updated in January 2020) to get

a list of Maven artifacts and their metadata. After updating

the latest version information from Maven Central in October

2020, we get a total of 184,817 distinct libraries for mining

candidate rules, and 4,045,748 distinct library versions for

API extraction. Then, we download the corresponding JAR file

from Maven Central for each version, if it has one. The total

size of downloaded JAR files is ∼3TB, but they can be safely
deleted after the APIs are extracted. For each JAR file, we use

Apache Commons BCEL™ library [51] to extract all public

classes along with their fields and methods and store each

class as a document in MongoDB. Each document describes a

unique and compact class signature object describing its fields,

methods, inheritance relationships, etc. They are indexed by

SHA1 computed from all its properties. We also maintain

mappings between library versions and classes. Finally, we

get 25,272,024 distinct classes in total. The whole download

and extraction process takes about 3 days to finish with 16

parallel threads on our server.

2) Dep Seq Construction: We use the GitHub repository list
provided by the Libraries.io dataset, in which we select non-

fork repositories with at least 10 stars and one pom.xml file,

resulting in 21,358 repositories. We set the 10-stars threshold

to ensure that the collected repositories are of sufficient quality.

The repository commits and blobs are then retrieved and

analyzed from World of Code version R (last updated April

2020). A repository may have multiple pom.xml files in

different paths for different sub-projects or sub-modules, so

we consider each file as tracking the dependency of one

project, and choose to construct one dep seq for each of the

pom.xml files. For each pom.xml file, we extract all commits

where this file is modified, separately parse its old version and

TABLE II
STATISTICS OF THE RECOMMENDATION DATABASE

Data Type Count or Size Time to Construct
GitHub repositories (P) 21,358 Several minutes
Commits with diffs 29,439,998 About 1 day
Parsed pom.xmls 10,009,952 About 1 day
Dep seqs (Dp) 147,220 Several Hours
Libraries (L) 185,817 Several Minutes
Library versions 4,045,748 Several Hours
Java classes 25,272,024 About 3 days
Non-zero API counts 4,934,677 About 2 weeks
Database size (compressed) ∼100GB About 3 weeks

new version to see whether any library is added or removed.

For merge commits, we only compare with one of its old

version due to design and performance constraints. For parallel

branches, we sort changes by time and merge them into one

dep seq. We then clean duplicate changes introduced by merge

commits or parallel branches. After filtering out dep seqs with

only one revision, we finally get 147,220 different dep seqs.
3) API Count Precomputation: As mentioned in Section

III-C, it is worthwhile to precompute an API Count table

for each (a, b) ∈ L × L, because on-demand computation
during recommendation is not only time-consuming but also

inefficient in that many Java file diffs will be analyzed multiple

times for different candidate rules. Therefore, we iterate over

all Java file diffs for each repository, while maintaining a set

of current candidate rules, to see whether some of them should

increment their API Count values. The whole computation can

be done in a highly parallel manner both for each repository

and for code analysis of different Java file pairs. In the end,

we get 4,934,677 library pairs with non-zero AC values. The
whole computation takes about two weeks to finish with 16

threads, but we believe it can be further optimized and only

needs to be run once, because the table can be incrementally

updated when new repository data come in. Table II provides

an overview of the final recommendation database we use.

V. EVALUATION

In this section, we first introduce two research questions for

evaluation. Then, we describe how we build two ground truth

datasets for different evaluation purposes. At last we show the

evaluation methods and results for each research question.
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A. Research Questions

Our main goal is to evaluate the effectiveness of Algorithm 1

in recommending library migration targets. Since the algorithm

mainly relies on a confidence value computed from four

metrics (Equation 15), we first verify the effectiveness of each

proposed metric, forming the first research question:

• RQ1: How effective is RS, MS, DS, and AS in identi-
fying real migration targets?

Then, to show that our approach has good overall perfor-

mance, we ask the second research question:

• RQ2: What is the performance of our approach, compared
with baselines and existing approaches?

B. Ground Truth

We use two ground truth datasets for different evaluation

purposes. The first is borrowed from previous work [14] and

recovered in the 21,358 repositories we collect. This set of

ground truth has reasonably good coverage for the source

libraries in it, so we can compute accurate performance metrics

and compare different approaches. The second is manually

verified from the recommendation results of our algorithm

on the 21,358 repositories, with 480 most popular libraries

as queries. We use this dataset to verify that our approach

can generalize well on a new dataset and confirm real word

migrations with comparable performance. In the subsequent

section, we refer to the first ground truth set as GT2014 and

the second as GT2020.

1) GT2014: We choose to recover a new ground truth of
migration rules based on the ground truth in [14], as the current

situation may have significantly changed since its publication.

The ground truth in [14] consists of 329 “abbreviated” library

name pairs which may correspond to multiple group IDs and

artifact IDs. They solve the aforementioned library aliasing

issue (Section IV-A) through manual abbreviation, but we

consider it too costly to repeat this on the 180k libraries we

collected. As the Maven artifact pairs before abbreviation is

not provided in [14], we choose to map the rules back to group

IDs and artifact IDs. To cover as much migration rules as

possible, we consider all pairs in Cartesian product as possible

rules for multiple mappings. We also conduct reverse and

transitive expansion of the rules until saturation (i.e. (a, b) ∈
R⇒ (b, a) ∈ R, (a, b) ∈ R∧ (b, c) ∈ R⇒ (a, c) ∈ R), based
on the intuition that libraries within one functionality category

can be replaced with any other library in the same category.

We get 3,878 “possible” migration rules after extension.

Recall in Section II-B that we define a migration rule as a

rule that we can confirm at least one migration in one project,

so the rules collected before may still contain many false

positives by this definition. Therefore, we collect all relevant

commits for these rules, filter them by commit messages, and

manually label the rules using the following criteria:

1) If library a and library b provide obviously different
functionalities, we label (a, b) as false.

2) For other rules, we manually check the “most possible”

commits by applying the message matching algorithm

in Section III-B2. If there exist some messages stating

a migration from a to b, we label (a, b) as true.
3) Otherwise, we check the commit diffs for easily un-

derstood small commits, and only label (a, b) as true
when we can find at least one understandable commit

performing a migration from a to b.

The labelling process is done by three of the authors with

at least one year of Java development experiences. They

are asked to search any unfamiliar libraries on Google, read

through relevant websites, and consult Java veterans in our

social network, until they become familiar with the libraries.

To mitigate threats brought by manual labelling, we adopt

a conservative labelling strategy and ensure all rules with

true labels are double checked by the author with 3 years

of Java experiences and 1 year of industry experiences. We

also manually check the top-20 recommendation results and

add any new migration rules using the same labelling process.

Finally, we get a ground truth of 773 migration rules with

190 different source libraries, distributed in 2,214 commit pairs

from 1,228 repositories. This set of migration rules are mainly

used for performance evaluations and comparison with other

approaches, and denoted as Rt in the remainder of this section.

In RQ1 and RQ2, we use the aforementioned 190 source

libraries in Rt as the query to our approach (|Q| = 190),
which returns 243,152 candidate rules4 (|Rc| = 243, 152))
along with the metrics, commits and confidence values. Note

that the number of candidate rules is significantly larger than

the size of ground truth rules (|Rt| = 773), which makes an
effective ranking absolutely necessary. The recommendation

only takes several minutes to finish with precomputed API

Count data.

2) GT2020: We select the most popular 500 libraries based
on the number of repositories they have been added. After

filtering out existing source libraries in Rt, we get 480 li-

braries. We use them as query to our approach and collect their

recommendation output, resulting in 383,218 candidate rules.

To ensure that the migration rules we confirm are valuable

for a broad audience and keep a reasonable amount of human

inspection effort, we only inspect candidate rules that:

1) occur in top-20 recommendation result,

2) have been added in more than 10 repositories,

3) have non-zero confidence values.

After the filtering, we need to label 4,418 candidate rules

in 12,565 pom.xml file changes, 2,353 commit pairs and

1,313 repositories. We repeat the labelling process as described

before, and we successfully confirm 661 migration rules in

1,233 commits and 785 repositories, for 231 (48.125%) of

the 480 libraries. In RQ2, we also use GT2020 to verify

and compare the performance of our approach with existing

approaches for the 231 libraries, despite its incompleteness.

By merging GT2014 and GT2020, we get 1,384 migration

rules from 14,334 pom.xml changes, 3,340 commit pairs and

1,651 repositories (7.73% of the 21,358 repositories). If we
4The large number comes from Equation 7 which considers all possible

migrations that spans over multiple revisions.
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT APPROACHES IN GT2014

Approach MRR Precision@1 NDCG@10 Recall@20
Teyton et al. 0.7133 0.6368 0.6056 0.7257
Teyton et al.’ 0.7335 0.6757 0.6909 0.6391
Teyton et al.” 0.8858 0.8737 0.8909 0.1759
Alrubaye et al. 0.9412 0.9412 0.9412 0.0540
RS Only 0.7208 0.6474 0.6073 0.7270
MS Only 0.7619 0.6737 0.6619 0.7736
RS · MS 0.8275 0.7579 0.7436 0.8616
RS · MS · DS 0.8401 0.7737 0.7589 0.8680
RS · MS · AS 0.8379 0.7737 0.7479 0.8745
Our Approach 0.8566 0.7947 0.7702 0.8939

consider top 20% largest repositories in terms of commit num-

bers, 1,092 out of 4,271 repositories (25.57%) have undergone

at least one library migration. Both percentages are higher than

the reported percentage in [14] (5.57% and 9.95%), indicating

that library migrations have become more prevalent in Java

open source projects since 2014. The dataset is available on

our project website (see Abstract).

C. RQ1: How effective is RS, MS, DS, and AS in identifying
real migration targets from other libraries?

To answer RQ1, we plot survival functions for the confi-

dence value of the approach in [12], the four proposed metrics,

and the final confidence value of our approach, respectively.

For metric M , its survival function is defined as y = P (M ≥
x), where P () is the probability function. We estimate the
probabilities using GT2014, for both ground truth rules Rt and

other candidate rules Rc−Rt in Figure 4. We can observe in

Figure 4 that ground truth rules generally have significantly

higher probability of survival for all metrics, indicating the

effectiveness of each metric. We can also observe that any

filtering threshold x will result in either significant ground
truth losses or undesirable survival of many other candidate

rules due to their much larger quantity. Therefore, despite the

effectiveness of each metric, we conclude that any filtering

based method is inherently ineffective and we should leverage

relative ranking positions instead of absolute metric values for

selecting migration rules from the large number of candidates.

D. RQ2: What is the performance of our approach compared
with baselines and existing approaches?

For performance evaluation, we use the following quality

metrics common for evaluating ranking problems: Mean Re-

ciprocal Rank (MRR) [26], top-k precision, top-k recall, and
top-k Normalized Discounted Cumulative Gain (NDCG) [27].
These metrics have also been used to evaluate other recom-

mendation problems in software engineering [52]–[55].

Mean Reciprocal Rank (MRR) is defined as the mean of

the multiplicative inverse of the rank of the first ground truth

rule for all queries:

MRR =
1

|Q|
∑

q∈Q

1

min(q,x)∈Rt
rank(q, x)

(16)

It ranges between [0, 1], and a higher value means that the user
can see the first ground truth more quickly for each query.

Let Rk be the top-k ranked candidate rules for all queries,
we define top-k precision and top-k recall as:

Precision@k = |Rk ∩Rt| / |Rk| (17)

Recall@k = |Rk ∩Rt| / |Rt| (18)

Normalized Discounted Cumulative Gain (NDCG) mea-

sures to what extent the ranking result deviates from the ideal

result. For each library l ∈ Q and its top-k returned rules
Rlk, let r(i) = 1 if the rank i is in ground truth and 0
otherwise. By defining Discounted Cumulative Gain (DCG) as

DCGl@k =
∑k

i=1
r(i)

log2(i+1) and Ideal Discounted Cumulative

Gain (IDCG) as IDCGl@k =
∑|Rlk∩Rt|

i=1
1

log2(i+1) , we further

define NDCG@k as

NDCG@k =
1

|Q|
∑

l∈Q

DCGl@k

IDCGl@k
(19)

which ranges in [0, 1] where 1 means a perfect match with
ideal top-k ranking result and 0 means the worst.
We first compare performance of our approach with the

following alternatives using GT2014:

• Teyton et al. [12]: Use confT (Equation 6) for ranking.
• Teyton et al.’ [12]: Keep rules confT ≥ 0.002 and rank.
• Teyton et al.” [12]: Keep rules confT ≥ 0.015 and rank.
• Alrubaye et al. [17]: Filter out RS < 0.6 or AC = 0.
• RS Only: Use only RS for ranking.
• MS Only: Use only MS for ranking.
• RS · MS: Use RS ·MS for ranking.
• RS · MS · DS: Use RS ·MS ·DS for ranking.
• RS · MS · AS: Use RS ·MS ·AS for ranking.
We choose three thresholds for Teyton et al. [12] to demon-

strate its performance under different conditions, and tune

parameters for Alrubaye et al. [17] to align with its reported

performance. We only show MRR, top-1 precision, top-10

NDCG and top-20 recall due to space constraints, where

MRR and top-1 precision measures accuracy, top-10 NDCG

measures idealness, and top-20 recall measures completeness5.
The performance comparison results are shown in Table III.

Our approach can outperform all alternatives in term of top-20

recall, while keeping high top-1 precision, MRR and top-10

NDCG. Although aggressive filtering approaches like Teyton

et al.” and Alrubaye et al. have higher precision, NDCG, and

MRR6, their recall is significantly lower than other approaches

because of the filtering. The comparison with other metric

combinations also shows that all four metrics are necessary

to achieve the best performance. Therefore, we conclude that

our approach achieves the best overall performance and is the

most suitable one for migration recommendation, compared

with the evaluated alternatives.
To demonstrate the generality of our approach, we further

compute the quality metrics using GT2020 for the 231 queries.

Since GT2020 is incomplete, we also show performance of

Teyton et al.’ for comparison. Note that precision and MRR

will be lower than their real values, and top-20 recall is 1

because we only check until top-20 results. However, we can
5More results (including F-measures) are available on our project website.
6Note that precision, NDCG and MRR basically measures the same thing

if only one or very few items are returned for each query.
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Fig. 4. The survival functions of ground truth rules and other rules. Note that the 0.1 minimum threshold is not applied for AS here.

TABLE IV
PERFORMANCE OF OUR APPROACH IN GT2020

Approach MRR Precision@1 NDCG@10 Recall@20
Teyton et al.’ 0.6985 0.6035 0.6653 0.8020
Our Approach 0.7902 0.6870 0.7770 1.0000

still observe that our approach outperforms Teyton et al.’ with

a similar margin as in Table III. For example, the MRR of

our approach is 13.1% higher than Teyton et al.’ in Table IV

and 16.8% higher in Table III. Therefore, we conclude that

our approach generalizes well in an unknown dataset.

VI. RECOMMENDATION EXAMPLE

Table V presents one recommendation example from our

results: c3p0:c3p0. It is a database connection pooling library

which has been renamed to com.mchange:c3p0 since version

0.9.2 in 2007. Many other competitors for database pooling

also emerged from 2007, under different licenses or for

specific scenarios. We choose c3p0:c3p0 as an example not

only because of the diversity of migration targets returned,

but also because it well demonstrates common failures and

peculiarities of our approach. We can see from Table V that

the top-1 recommended target is com.mchange:c3p0, with

much higher confidence than the rest. The second result is

Hikari CP, a database pooling library since 2013, which boasts

its light-weight and much higher performance compared with

other libraries. The 5th and 10th result is Alibaba Druid, a

connection pool designed specifically for monitoring purposes.

The 7th result is c3p0 for integrated use with Hibernate.

The 15th result is Apache Commons DBCP, a pooling library

under the ASF license. The rest of the results are omitted

in the Table because they are all false positives. Given the

prevalence of migrations from c3p0:c3p0, a developer should

also consider abandoning it for his/her project, and choose one

of the above libraries instead after evaluating the migration

costs, benefits, licenses and other factors through investigation

of the migration commits and other available information.

VII. LIMITATIONS

A. Failure Case Analysis

Cold Start. The most obvious failure case in our approach
is that, it can only recommend migration targets that have

been frequently migrated in the project corpus. However, this

limitation can be mitigated by using a large project corpus,

because the more worthy a migration is, the more common

it will be in such a corpus. As shown in [15], 33 of 223

ASF projects have undergone at least one logging migration,

mostly from ad-hoc logging libraries (e.g. log4j) to log

abstraction libraries (e.g. slf4j) and log unification libraries

(e.g. logback), and our approach performs well in these

popular migrations. Developers can also conclude that a library

is not a worthy migration target if it is absent in our result,

even if it provides similar functionalities.

Data Sparsity. Other failure cases are generally caused by
the sparsity of many real migrations in our data. If only one

or several relevant commits can be identified for a query,

other added libraries in these commits tend to occur as

false positives together with the true migration target (e.g.

hibernate-core in Table V). MS and AS can handle such
cases, but they sometimes fail either because developers do not

write informative commit messages, or because code changes

are not needed for the migration or are completed before/after

the pom.xml changes.

Miscellaneous. Our approach will fail if a library has no
substitute at all, and it cannot issue any warnings in such

cases. Our method of matching commit messages sometimes

falsely identify a migration, and can be improved by more

sophisticated NLP techniques. Our approach also frequently

returns Bills of Materials, libraries that warp other libraries,

or “full solution” frameworks like Spring in our results. Even

if they are not considered as migration targets during the

labelling process, they may still be useful for developers.

B. Threat to Validity

1) Construct Validity: The metrics are mainly designed to
achieve high performance in the formulated problem, and may

not be a good indicator on the appropriateness or optimality

of a given migration for a specific project. Further research

is needed to understand factors that drive library migrations,

in order to design a better recommendation approach. Even in

term of performance, we cannot guarantee that the metrics

we design and the parameters we choose are optimal. To

avoid over-fitting on a single dataset, we choose the simplest

possible form for each metric, and evaluate our approach on

an additional dataset. For evaluation, it is generally impossible

to compute accurate recall for all possible migration targets in

the wild [12], [14]. Even if we limit the evaluation on a set

of ground truth libraries, we cannot guarantee completeness

of the identified migration targets. To mitigate this threat, we

aggressively extend the largest set of migration rules from

existing work [14] and validate all extended rules, to present

a “best effort” estimation of recall for GT2014 in RQ2.

2) External Validity: Our approach may not generalize
to a different dataset (e.g. industry projects) and to other

80

Authorized licensed use limited to: UCLA Library. Downloaded on March 19,2024 at 23:39:56 UTC from IEEE Xplore.  Restrictions apply. 



TABLE V
RECOMMENDATION RESULTS OF C3P0:C3P0. MIGRATION COMMITS ARE OMITTED HERE DUE TO SPACE CONSTRAINTS

Rank Is Correct Library Confidence RS MS DS AS

1 True com.mchange:c3p0 0.4083 0.9880 4.1700 0.9910 1.0000
2 True com.zaxxer:HikariCP 0.0124 0.0238 1.0000 0.5222 0.1000
3 False org.jboss.jbossts.jta:narayana-jta 0.0071 0.0357 2.0000 1.0000 0.1000
4 False org.springframework.boot:spring-boot-starter-test 0.0050 0.0595 1.0000 0.8518 0.1000
5 True com.alibaba:druid 0.0039 0.0476 1.0000 0.8222 0.1000
6 False org.jboss.spec.javax.servlet:jboss-servlet-api 3.0 spec 0.0038 0.0238 1.5849 1.0000 0.1000
7 True org.hibernate:hibernate-c3p0 0.0037 0.0357 1.5849 0.5430 0.1000
8 False org.hibernate:hibernate-core 0.0030 0.0476 1.5849 0.3870 0.1000
9 False org.springframework.boot:spring-boot-starter-web 0.0029 0.0357 1.0000 0.7539 0.1000
10 True com.alibaba:druid-spring-boot-starter 0.0026 0.0238 1.0000 1.0000 0.1000
11-14 False All false positives, omitted due to space constraints - - - - -
15 True commons-dbcp:commons-dbcp 0.0012 0.0238 1.0000 0.3199 0.1667

programming languages and library ecosystems. We mitigate

this threat by collecting a large number of open source Java

projects and libraries, and testing on many library queries.

Also, our approach in Section III does not make any lan-

guage specific assumptions and can be easily re-implemented

for other programming languages. Others can also refer to

Section IV as an example of how to make implementation

choices for a specific language or library ecosystem.

VIII. RELATED WORK

In this section, we go through related works not discussed

before, and we summarize the relationship, differences or

improvements of our work compared with theirs.

To recommend libraries to developers, Thung et al. [52]

propose to recommend libraries based on the libraries a project

is already using, through association rule mining and collabo-

rative filtering. More approaches are proposed for this problem

later, such as multi-objective optimization [55], hierarchical

clustering [56], advanced collaborative filtering [57], matrix

factorization [58], etc. However, their main objective is to

recommend missed reuse opportunities based on the libraries

a project is using and the properties of the project, not to

recommend migration opportunities of a library already in use.

Chen et al. [20] mine semantically similar libraries by training

word embedding on Stack Overflow tags. Given a library,

their method can return a list of possibly similar libraries,

but it provides no evidence on the feasibility and prevalence

of migrations between this library and the returned libraries.

Mora et al. [21] study the role of common metrics in

developer selection of libraries. Alrubaye et al. [18] analyze

several code quality metrics before and after library migration.

They all use existing metrics for empirical analysis, while

we specifically design new metrics for accurate mining and

recommendation of migrations from existing software data.

A number of studies have proposed methods for mining

API mappings of two similar libraries [13], [16], [19], [41],

[44], [59] or directly editing code to use the new API [60],

[61]. Zheng et al. [59] mine alternative APIs from developer

shared knowledge in forums or blog posts. Gokhale et al. [41]

build mappings by harvesting the execution traces of similar

APIs. Teyton et al. [13] find API mappings by analyzing

their co-occurring frequencies in existing migrations. Alrubaye

et al. improve their method using information retrieval tech-

niques [16] and machine learning models [19]. Chen et al. [44]

propose an unsupervised deep learning based approach that

embeds both API usage patterns and API descriptions. Xu

et al. [60] propose an approach to infer and apply migration

edit patterns from existing projects. Collie et al. [61] pro-

pose to model and synthesize library API behavior without

prior knowledge, which can be used for identifying migration

mappings and applying migration changes. The output of our

approach can serve as input for any of the approaches above,

because they all require manual specification of library pairs.

Our new migration dataset may also be helpful in facilitating

further research into this area.
Other recent works also aim to aid dependency manage-

ment, but from a different perspective, such as characterizing

library usage [6], versioning [62]–[64] and update behav-

ior [38], discovering considerations for library selection [21],

[24], resolving version conflicts in dependency tree [65], [66],

in multi-module projects [67], and so on.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose an approach for automated recom-

mendation of library migration targets, through mining depen-

dency change sequences of a large corpus of software projects.

We formulate this problem as a mining and ranking problem

and design four advanced metrics for ranking. To the best of

our knowledge, our approach achieves best performance in this

problem domain. We also verify and build a latest migration

dataset for further research. In the future, we plan to improve

our approach to overcome current limitations (Section VII),

collect usage feedback from industry developers, and extend

the migration rule dataset in a crowd-sourced manner. We also

plan to systematically investigate developer considerations for

library migration, using the collected migration dataset.
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